7 resultados para Glycine max L. Merr.
Resumo:
We used glycine betaine (5–20% w/v) for blanching green peas (100°C, 60 s), and their subsequent freezing and storage (–20°C, 90 days). Blanching after the addition of glycine betaine at ≥10% (w/v) followed by a 90 day storage period which resulted in the most desirable outcome: higher vitamin C levels, a superior green color, enhanced organoleptic quality and texture, and improved retention of peroxidase and lipoxygenase activity relative to control peas (no glycine betaine added). Microscopic characterizations of control and treated peas revealed that glycine betaine acts as a cryoprotectant which maintains cellular integrity. Glycine betaine (10% w/v) could be used commercially for production of frozen peas with better quality attributes.
Resumo:
Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degreesC target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to similar to 13% moisture at 180 degreesC in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degreesC, reached a maximum at pH 6.S at 150 degreesC, and increased with increasing pH at 120 degreesC. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by > 60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased similar to3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.
Resumo:
Arsenate and arsenite sensitivity and arsenate influx tests were conducted for two rice cultivars of different arsenic sensitivity. Azucena and Bala. These were to establish if the mechanism of reduced arsenic sensitivity is achieved through an altered phosphate uptake system, as shown for Holcus lanatus. High phosphate treatments (>= 50 mu M) provided protection against both arsenate and arsenite. Unlike the H. lanatus tolerance mechanism, in the less sensitive cultivar Bala, arsenate influx did not decrease with phosphate treatment and phosphate transporters appeared to be constitutively upregulated; V(max) for arsenate influx remain similar when Bala was grown in the presence or absence of phosphate (V(max) - 0.90 and 0.63 nmol g(-1) f.wt min(-1) respectively). Although mean K(m) appear different, Bala did not show lower affinity to arsenate than Azucena in the absence of phosphate (K(m) - Azucena, 0.30 mM and Bala, 0.18), while in phosphate treatment, Bala arsenate affinity was half that observed for Azucena (K(m) - Azucena, 0.14 and Bala, 0.36 mM). These were low compared to a 4 and 6 fold decrease seen for similar studies on H. lanatus in the absence and presence of phosphate. Phosphate-induced arsenic protection was observed but the mechanism does not resemble that of H. lanatus. Alternative mechanisms were discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.
Resumo:
Acid whey has become a major concern especially in dairy industry manufacturing Greek yoghurt. Proper disposal of acid whey is essential as it not only increases the BOD of water but also increases the acidity when disposed of in landfill, rendering soil barren and unsuitable for cultivation. Effluent (acid-whey) treatment increases the cost of production. The vast quantities of acid whey that are produced by the dairy industry make the treatment and safe disposal of effluent very difficult. Hence an economical way to handle this problem is very important. Biogenic glycine betaine and trehalose have many applications in food and confectionery industry, medicine, bioprocess industry, agriculture, genetic engineering, and animal feeds (etc.), hence their production is of industrial importance. Here we used the extreme, obligate halophile Actinopolyspora halophila (MTCC 263) for fermentative production of glycine betaine and trehalose from acid whey. Maximum yields were obtained by implementation of a sequential media optimization process, identification and addition of rate-limiting enzyme cofactors via a bioinformatics approach, and manipulation of nitrogen substrate supply. The implications of using glycine as a precursor were also investigated. The core factors that affected production were identified and then optimized using orthogonal array design followed by response surface methodology. The maximum production achieved after complete optimization was 9.07 ± 0.25 g/L and 2.49 ± 0.14 g/L for glycine betaine and trehalose, respectively.
Resumo:
The polymorphism of arsenate tolerance in a Holcus lanatus L. population from an uncontaminated soil was investigated and a high percentage of tolerant individuals (65%) was found in the population studied. Influx of arsenate was highly correlated to arsenate tolerance within the population, with the most tolerant individuals having the lowest rates of arsenate influx. Isotherms for the high affinity arsenate uptake systems were determined in six tolerant and six non-tolerant genotypes. Tolerant plants had the lowest rates of arsenate influx. This was achieved by adaptation of the Vmax of arsenate influx with the Vmax of the high affinity uptake system saturating at lower substrate concentrations in the tolerant plants. The polymorphism is discussed with relation to adaptation to the extreme environments to which the plants are subjected on mine-spoil soils. © 1992 Kluwer Academic Publishers.
Resumo:
In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.