20 resultados para Global temperature changes.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reconstruction of hydroclimate variability is an important part of understanding natural climate change on decadal to millennial timescales. Peatland records reconstruct 'bog surface wetness' (BSW) changes, but it is unclear whether it is a relative dominance of precipitation or temperature that has driven these variations over Holocene timescales. Previously, correlations with instrumental climate data implied that precipitation is the dominant control. However, a recent chironomid inferred July temperature record suggested temperature changes were synchronous with BSW over the mid-late Holocene. This paper provides new analyses of these data to test competing hypotheses of climate controls on bog surface wetness and discusses some of the distal drivers of large-scale spatial patterns of BSW change. Using statistically based estimates of uncertainty in chronologies and proxy records, we show a correlation between Holocene summer temperature and BSW is plausible, but that chronologies are insufficiently precise to demonstrate this conclusively. Simulated summer moisture deficit changes for the last 6000 years forced by temperature alone are relatively small compared with observations over the 20th century. Instrumental records show that summer moisture deficit provides the best explanatory variable for measured water table changes and is more strongly correlated with precipitation than with temperature in both Estonia and the UK. We conclude that BSW is driven primarily by precipitation, reinforced by temperature, which is negatively correlated with precipitation and therefore usually forces summer moisture deficit in the same direction. In western Europe, BSW records are likely to be forced by changes in the strength and location of westerlies, linked to large-scale North Atlantic ocean and atmospheric circulation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background

Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established.

Methods

A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal.

Results

In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques.

Conclusions

Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensively C-14 AMS dated pollen and chironomid record from Boundary Stream Tarn provides the first chironomid-derived temperature reconstruction to quantify temperature change during Lateglacial times (17,500-10,000 cal yr BP) in the Southern Alps, New Zealand. The records indicate a ca 1000-year disruption to the Lateglacial warming trend and an overall cooling consistent with the Antarctic Cold Reversal (ACR). The main interval of chironomid-inferred summer temperature depression (similar to 2-3 degrees C) lasted about 700 years during the ACR. Following this cooling event, both proxies indicate a warming step to temperatures slightly cooler than present during the Younger Dryas chronozone (12,900-11,500 cal yr BP). These results highlight a direct linkage between Antarctica and mid-latitude terrestrial climate systems and the largely asynchronous nature of the interhemispheric climate system during the last glacial transition. The greater magnitude of temperature changes shown by the chironomid record is attributed to the response of the proxies to differences in seasonal climate with chironomids reflecting summer temperature and vegetation more strongly controlled by duration of winter or by minimum temperatures. These differences imply stronger seasonality at times during the Lateglacial, which may explain some of the variability between other paleoclimate records from New Zealand and have wider implications for understanding differences between proxy records for abrupt climate change. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small mammals that inhabit arid and temporally unproductive environments use several methods to conserve energy. Here, we investigate the energetic role of sun basking in striped mice Rhabdomys pumilio from the Succulent Karoo desert in South Africa. We observed mice in front of their nests for 140 h and recorded the time they spent basking during the non-breeding (dry) and the breeding (wet) seasons. We measured temperature changes in model mice to provide an indication of the heat that can be absorbed from the sun. Finally, we measured the oxygen consumption (circle dot O-2) of mice at their basking sites in the field both in the sun and in the shade. This was accomplished using a portable respirometry system with a metabolism chamber, which could be placed in and out of the sun. Observations showed that mice basked more often during the non-breeding than during the breeding season. During the former season, mice spent an average of 11.9 +/- 1.1 min (se) in the morning and 5.5 +/- 0.5 min in the afternoon per day basking. Within the metabolism chamber, circle dot O-2 decreased when the animal was in the sunshine compared with the shade. This effect occurred independent of the ambient temperature (T-a), indicating that a significant amount of radiant energy was absorbed from the sun. Basking may be an alternative to other energy-acquisition behaviours, such as foraging, which might be particularly useful at times when food is scarce.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predicting how species distributions might shift as global climate changes is fundamental to the successful adaptation of conservation policy. An increasing number of studies have responded to this challenge by using climate envelopes, modeling the association between climate variables and species distributions. However, it is difficult to quantify how well species actually match climate. Here, we use null models to show that species-climate associations found by climate envelope methods are no better than chance for 68 of 100 European bird species. In line with predictions, we demonstrate that the species with distribution limits determined by climate have more northerly ranges. We conclude that scientific studies and climate change adaptation policies based on the indiscriminate use of climate envelope methods irrespective of species sensitivity to climate may be misleading and in need of revision.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pressure-sensitive adhesives (PSAs) have applications in the fields of packaging, joining, wound care, and personal care. Depending on the application of the PSA, different performance tests are carried out when new products are developed or the quality of the existing products is checked. Tack is the property of an adhesive that enables it to form instant bond on the surface under light pressure. The tack of a PSA strongly depends on the way the bond is created. Parameters such as the bonded area, contact time and the nature of tack materials all affect the tack force measured. In the development of any PSA, it is desirable to correlate the performance related properties such as tack and peel strength to the rheological behaviour. Finding these correlations would make it possible to evaluate the performance of a PSA using its rheological characteristics. In this investigation we have studied the influence of rheological behaviour of three different PSAs on their tackiness. The three different PSAs used in this study are a low molecular weight rosin ester, high molecular weight rosin ester, and dicyclopentadiene. Various rheological properties such as viscosity, phase angle, and elastic and viscous moduli are measured versus the frequency and temperature. Also the tack properties at various removal speeds and temperatures are evaluated. Analysis of the results indicates different performances of the three PSAs which could be related to their rheological properties, especially the phase angle, at different frequencies and temperatures. The PSA with high molecular weight rosin ester is more sensitive to temperature changes and showed drastic changes in tackiness from high temperature to low temperature. On the other hand, rosin ester with low molecular weight is less sensitive to temperature changes. © 2010 VSP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions.

There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock’ will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain.

Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages.

The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction.

The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work explores the effects of argon and nitrogen, two electrochemically and chemically inert gases frequently used in sample preparation of room temperature ionic liquid (RTIL) solutions, on the eelectrochemical characterization of ferrocene (Fc) dissolved in the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(2)mim][NTf2]). Remarkably, chronoamperometrically determined diffusion coefficients of Fc in [C(2)mim][NTf2] are found to increase from 4.8 (+/- 0.2) x 10(-11) m(2) s(-1) under vacuum conditions to 6.6 (+/- 0.5) x 10(-11) m(2) s(-1) in an atmosphere of 1 atm Ar. In contrast, exposing a vacuum-purified sample to an atmosphere of 1 atm N-2 resulted in no significant change in the measured diffusion coefficient of Fc. The effect of dissolved argon on diffusion transport is unexpected and has implications in electrochemistry and elsewhere. Fc was found to volatilize under vacuum conditions. We propose, however, that evacuation of the cell by vacuum prior to electrochemical measurements being carried out is the only way to ensure that no contamination of the sample occurs, and use of an in situ method of determining the diffusion coefficient and concentration of Fc dispells,any ambiguity associated with Fc depletion by vacuum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Warming could strongly stabilize or destabilize populations and food webs by changing the interaction strengths between predators and their prey. Predicting the consequences of warming requires understanding how temperature affects ingestion (energy gain) and metabolism (energy loss). Here, we studied the temperature dependence of metabolism and ingestion in laboratory experiments with terrestrial arthropods (beetles and spiders). From this data, we calculated ingestion efficiencies (ingestion/metabolism) and per capita interaction strengths in the short and long term. Additionally, we investigated if and how body mass changes these temperature dependencies. For both predator groups, warming increased metabolic rates substantially, whereas temperature effects on ingestion rates were weak. Accordingly, the ingestion efficiency (the ratio of ingestion to metabolism) decreased in all treatments. This result has two possible consequences: on the one hand, it suggests that warming of natural ecosystems could increase intrinsic population stability, meaning less fluctuations in population density; on the other hand, decreasing ingestion efficiencies may also lead to higher extinction risks because of starvation. Additionally, predicted long-term per capita interaction strengths decreased with warming, which suggests an increase in perturbation stability of populations, i.e., a higher probability of returning to the same equilibrium density after a small perturbation. Together, these results suggest that warming has complex and potentially profound effects on predator-prey interactions and food-web stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However 'change' is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature. How such changes might affect species interactions is important, not just through the presence or absence of interactions, but also because the patterning of interaction strengths among species is intimately associated with community stability. Interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionally important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We review the best empirical data available detailing the frequency distribution of interaction strengths in communities. We present the underlying (but consistent) pattern of species interactions and discuss the implications of this patterning. We then examine how such a basic pattern might be affected given various scenarios of 'change' and discuss the consequences for community stability and ecosystem functioning.