2 resultados para Glass fibre membrane
Resumo:
Fibre-reinforced mouldings are of growing interest to the rotational moulding industry due to their outstanding price performance ratio. However, a particular problem that arises when using reinforcements in this process is that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this paper we report on studies to incorporate, short glass fibres into rotationally moulded parts. Four different approaches were investigated; direct addition of fibre in between two powder shots, addition of a layer of pre-compounded polyethylene-glass fibre pellets between two powder shots, addition of a layer of pre-compounded polyethylene-glass fibre powder between two powder shots and a single layer of glass-reinforced, pre-compounded powder. Results indicate that pre-compounding is necessary to gain performance enhancement and the single layer part made from glass-reinforced, pre-compounded powder exhibited the highest tensile and flexural modulus.
Resumo:
With ever increasing demands to strengthen existing reinforced concrete structures to facilitate higher loading due to change of use and to extend service lifetime, the use of fibre reinforced polymers (FRPs) in structural retrofitting offers an opportunity to achieve these aims. To date, most research in this area has focussed on the use of glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP), with relatively little on the use of basalt fibre reinforced polymer (BFRP) as a suitable strengthening material. In addition, most previous research has been carried out using simply supported elements, which have not considered the beneficial influence of in-plane lateral restraint, as experienced within a framed building structure. Furthermore, by installing FRPs using the near surface mounted (NSM) technique, disturbance to the existing structure can be minimised.
This paper outlines BFRP NSM strengthening of one third scale laterally restrained floor slabs which reflect the inherent insitu compressive membrane action (CMA) in such slabs. The span-to-depth ratios of the test slabs were 20 and 15 and all were constructed with normal strength concrete (~40N/mm2) and 0.15% steel reinforcement. 0.10% BFRP was used in the retrofitted samples, which were compared with unretrofitted control samples. In addition, the bond strength of BFRP bars bonded into concrete was investigated over a range of bond lengths with two different adhesive thicknesses. This involved using an articulated beam arrangement in order to establish optimum bond characteristics for use in strengthening slab samples.