2 resultados para Geometry-free and ionosphere-free


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fibre reinforced polymers (CFRP) are increasingly being used in the aerospace, automotive and defence industry due to their high specific stiffness and good corrosion resistance. In a modern aircraft, 50-60% of its structure is made up of CFRP material while the remainder is mostly a combination of metallic alloys (typically aluminium or titanium alloys). Mechanical fastening (bolting or riveting) of CFRP and metallic components has thus created a pressing requirement of drilling several thousand holes per aircraft. Drilling of stacks in a single-shot not only saves time, but also ensures proper alignment when fasteners are inserted, achieving tighter geometric tolerances. However, this requirement poses formidable manufacturing challenges due to the fundamental differences in the material properties of CFRP and metals e.g. a drill bit entering into the stack encounters brittle and abrasive CFRP material as well as the plastic behaviour of the metallic alloy, making the drilling process highly non-linear.

Over the past few years substantial efforts have been made in this direction and majority of the research has tried to establish links between how the process parameters (feed, depth of cut, cutting speed), tooling (geometry, material and coating) and the wear of the cutting tool affect the hole quality. Similarly, multitudes of investigations have been conducted to determine the effects of non-traditional drilling methods (orbital, helical and vibration assisted drilling), cutting zone temperatures and efficiency of chip extraction on the hole quality and rate of tool wear during single shot drilling of CFRP/alloy stacks.

In a timely effort, this paper aims at reviewing the manufacturing challenges and barriers faced when drilling CFRP/alloy stacks and to summarise various factors influencing the drilling process while detailing the advances made in this fertile research area of single-shot drilling of stack materials. A survey of the key challenges associated with avoiding workpiece damage and the effect these challenges have on tool design and process optimisation is presented. An in depth critique of suitable hole making methods and their aptness for commercialisation follows. The paper concludes by summarising the future work required to achieve repeatable, high quality single shot drilled holes in CFRP/alloy stacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The angle concept is a multifaceted concept having static and dynamic definitions. The static definition of the angle refers to “the space between two rays” or “the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamic definition of the angle concept highlights that the size of angle is the amount of rotation in direction (Fyhn, 2006). Since both definitions represent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may hold misconceptions about the angle concept. In this regard, the aim of this research was to explore high achievers’ knowledge regarding the definition of the angle concept as well as to investigate their erroneous answers on the angle concept.

104 grade 6 students drawn from four well-established elementary schools of Yozgat, Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5, and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

The angle concept is a multifaceted concept having static and dynamic definitions.The static definition of the angle refers to “the space between two rays” or“the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamicdefinition of the angle concept highlights that the size of angle is the amountof rotation in direction (Fyhn, 2006). Since both definitionsrepresent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may holdmisconceptions about the angle concept. In this regard, the aim of thisresearch was to explore high achievers’ knowledge regarding the definition ofthe angle concept as well as to investigate their erroneous answers on theangle concept.

104grade 6 students drawn from four well-established elementary schools of Yozgat,Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5,and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

In the first question, students were asked to answer a multiple choice questions consisting of two statics definitions and one dynamic definition of the angle concept. Only 38 of 104 students were able to recognize these three definitions. Likewise, Mitchelmore and White (1998) investigated that less than10% of grade 4 students knew the dynamic definition of the angle concept. Additionally,the purpose of the second question was to figure out how well students could recognize 0-degree angle. We found that 49 of 104 students were unable to recognize MXW as an angle. While 6 students indicated that the size of MXW is0, other 6 students revealed that the size of MXW is 360. Therefore, 12 of 104students correctly answered this questions. On the other hand, 28 of 104students recognized the MXW angle as 180-degree angle. This finding demonstrated that these students have difficulties in naming the angles.Moreover, the third question consisted of three concentric circles with center O and two radiuses of the outer circle, and the intersection of the radiuses with these circles were named. Then, students were asked to compare the size of AOB, GOD and EOF angles. Only 36 of 104 students answered correctly by indicating that all three angles are equal, whereas 68 of 104 students incorrectly responded this question by revealing AOB<GOD< EOF. These students erroneously thought the size of the angle is related to either the size of the arc marking the angle or the area between the arms of the angle and the arc marking angle. These two erroneous strategies for determining the size of angles have been found by a few studies (Clausen-May,2008; Devichi & Munier, 2013; Kim & Lee, 2014; Mithcelmore, 1998;Wilson & Adams, 1992). The last question, whose aim was to determine how well students can adapt theangle concept to real life, consisted of an observer and a barrier, and students were asked to color the hidden area behind the barrier. Only 2 of 104students correctly responded this question, whereas 19 of 104 students drew rays from the observer to both sides of the barrier, and colored the area covered by the rays, the observer and barrier. While 35 of 104 students just colored behind the barrier without using any strategies, 33 of 104 students constructed two perpendicular lines at the both end of the barrier, and colored behind the barrier. Similarly, Munier, Devinci and Merle (2008) found that this incorrect strategy was used by 27% of students.

Consequently, we found that although the participants in this study were high achievers, they still held several misconceptions on the angle concept and had difficulties in adapting the angle concept to real life.

Keywords: the angle concept;misconceptions; erroneous answers; high achievers

References

Clausen-May, T. (2008). AnotherAngle on Angles. Australian Primary Mathematics Classroom, 13(1),4–8.

Devichi, C., & Munier, V.(2013). About the concept of angle in elementary school: Misconceptions andteaching sequences. The Journal of Mathematical Behavior, 32(1),1–19. http://doi.org/10.1016/j.jmathb.2012.10.001

Fyhn, A. B. (2006). A climbinggirl’s reflections about angles. The Journal of Mathematical Behavior, 25(2),91–102. http://doi.org/10.1016/j.jmathb.2006.02.004

Henderson, D. W., & Taimina,D. (2005). Experiencing geometry: Euclidean and non-Euclidean with history(3rd ed.). New York, USA: Prentice Hall.

Kim, O.-K., & Lee, J. H.(2014). Representations of Angle and Lesson Organization in Korean and AmericanElementary Mathematics Curriculum Programs. KAERA Research Forum, 1(3),28–37.

Mitchelmore, M. C., & White,P. (1998). Development of angle concepts: A framework for research. MathematicsEducation Research Journal, 10(3), 4–27.

Mithcelmore, M. C. (1998). Youngstudents’ concepts of turning and angle. Cognition and Instruction, 16(3),265–284.

Munier, V., Devichi, C., &Merle, H. (2008). A Physical Situation as a Way to Teach Angle. TeachingChildren Mathematics, 14(7), 402–407.

Wilson, P. S., & Adams, V.M. (1992). A Dynamic Way to Teach Angle and Angle Measure. ArithmeticTeacher, 39(5), 6–13.