53 resultados para Geology, Stratigraphic -- Cretaceous -- Catalonia -- Bac Grillera, Mountains
Resumo:
Th/U and Th/K data from spectral gamma-ray logs obtained from outcrop successions have been used as a rapid and inexpensive proxy for determining possible episodes of humid-arid palaeoclimate change. Such outcrop-based measurements have never been tested using spectral gamma-ray data obtained from wireline logs in subsurface boreholes. Th/K and Th/U ratios have traditionally been used to decipher sequence stratigraphic patterns, at outcrop and in borehole. The possible influence of palaeoclimate on such ratio changes has yet to be proven, especially from borehole data. In this work, we compare borehole-derived Th/K (and to a lesser extent Th/U) to palaeoenvironmental changes inferred from palynology and deduce that both sea level and changing hinterland weathering regimes caused discrete fluctuations observed in the spectral gamma-ray logs. This is the first time such subsurface information has been used in this way. Interpretation of wireline logs in terms of palaeoclimate as well as sea level may now be considered, and the use of such logs in palaeoclimate reconstruction is strengthened.
Resumo:
Peak altitudes, hypsometry, geology, and former equilibrium-line altitudes (ELAs) are analyzed across the Sredinny Mountains (Kamchatka). Overall, evidence is found to suggest that the glacial buzzsaw has operated to shape the topography of this mountain range, but the strength of this signature is not spatially uniform. In the southern sector of the mountains, we see evidence that an efficient glacial buzzsaw has acted to impose constraints upon topography, limiting peak altitudes, and concentrating land-surface area (hypsometric maxima) close to palaeo-ELAs. By contrast, in the northern sector of the mountains, a number of peaks rise high above the surrounding topography, and land-surface area is concentrated well below palaeo-ELAs. This deviation from a classic ‘buzzsaw signature’, in the northern sector of the mountains, is considered to reflect volcanic construction during the Quaternary, resulting in a series of high altitude peaks, combined with the action of dynamic glaciers, acting to skew basin topography toward low altitudes, well below palaeo-ELAs. These glaciers are considered to have been particularly dynamic because of their off-shore termination, their proximity to moisture-bearing air masses from the North Pacific, and because accumulation was supplemented by snow and ice avalanching from local high altitude peaks. Overall, the data suggest that the buzzsaw remains a valid mechanism to generally explain landscape evolution in mountain regions, but its signature is significantly weakened in mountain basins that experience both volcanic construction and climatic conditions favouring dynamic glaciation.
Resumo:
Lower Cretaceous meandering and braided fluvial sandstones of the Nubian Formation form some of the most important subsurface reservoir rocks in the Sirt Basin, north-central Libya. Mineralogical, petrographical and geochemical analyses of sandstone samples from well BB6-59, Sarir oilfield, indicate that the meandering fluvial sandstones are fine- to very fine-grained subarkosic arenites (av. Q91F5L4), and that braided fluvial sandstones are medium- to very coarse-grained quartz arenites (av. Q96F3L1). The reservoir qualities of these sandstones were modified during both eodiagenesis (ca. <70oC; <2 km) and mesodiagenesis (ca. >70oC; >2km). Reservoir quality evolution was controlled primarily by the dissolution and kaolinitization of feldspars, micas and mud intraclasts during eodiagenesis, and by the amount and thicknessof grain-coating clays, chemical compaction and quartz overgrowths during mesodiagenesis. However, dissolution and kaolinitization of feldspars, micas and mud intraclasts resulted in the creation of intercrystalline micro- and mouldic macro-porosity and permeability during eodiagenesis, which were more widespread in braided fluvial than in meandering fluvial sandstones. This was because of the greater depositional porosity and permeability in the braided fluvial sandstones which enhanced percolation of meteoric waters. The development of only limited quartz overgrowths in the braided fluvial sandstones, in which quartz grains are coated by thick illite layers, retained high porosity and permeability (12-23 % and 30- 600 mD). By contrast, meandering fluvial sandstones underwent porosity loss as a result of quartz overgrowth development on quartz grains which lack or have thin and incomplete grain-coating illite (2-15 % and 0-0.1mD). Further loss of porosity in the meandering fluvial sandstones occurred as a result of chemical compaction (pressuredissolution) induced by the occurrence of micas along grains contacts. Otherdiagenetic alterations, such as the growth of pyrite, siderite, dolomite/ankerite and albitization, had little impact on reservoir quality. The albitization of feldspars may have had minor positive influence on reservoir quality throughthe creation of intercrystalline micro-porosity between albite crystals.The results of this study show that diagenetic modifications of the braided and meandering fluvial sandstones in the Nubian Formation, and resulting changes in reservoir quality, are closely linked to depositional porosity and permeability. They are also linked to the thickness of grain-coating infiltrated clays, and to variations in detrital composition, particularly the amounts of mud intraclasts, feldspars and mica grains as well as climatic conditions.
Resumo:
UV-fluorescence microscopy provides a powerful tool for the assessment of the coherence of pollen and organic-walled microfossil assemblages in situations where recycling or the intrusion of younger pollen is suspected. It also provides sensitive information about the thermal maturity of pollen, important for assessing whether material has been heated. Examples are given from the Palaeolithic sites at Barnham, Suffolk, UK; Stanton Harcourt, Oxfordshire, UK; High Lodge, Suffolk, UK; Niah Cave, Sarawak, Malaysian Borneo; and Holocene sites at Wadi Dana, Jordan; Milldale and Creswell, Derbyshire, UK; and Dooncarton Mountain, County Mayo, Republic of Ireland.
Resumo:
A 37-m thick layer of stratified clay encountered during a site investigation at Swann's Bridge, near the sea-coast at Limavady, Northern Ireland, is one of the deepest and thickest layers of this type of material recorded in Ireland. A study of the relevant literature and stratigraphic evidence obtained from the site investigation showed that despite being close to the current shoreline, the clay was deposited in a fresh-water glacial lake formed approximately 13 000 BP. The 37-m layer of clay can be divided into two separate zones. The lower zone was deposited as a series of laminated layers of sand, silt, and clay, whereas the upper zone was deposited as a largely homogeneous mixture. A comprehensive series of tests was carried out on carefully selected samples from the full thickness of the deposit. The results obtained from these tests were complex and confusing, particularly the results of tests done on samples from the lower zone. The results of one-dimensional compression tests, unconsolidated undrained triaxial tests, and consolidated undrained triaxial compression tests showed that despite careful sampling, all of the specimens from the lower zone exhibited behaviour similar to that of reconstituted clays. It was immediately clear that the results needed explanation. This paper studies possible causes of the results from tests carried out on the lower Limavady clay. It suggests a possible mechanism based on anisotropic elasticity, yielding, and destructuring that provides an understanding of the observed behaviour.Key words: clay, laminations, disturbance, yielding, destructuring, reconstituted.