42 resultados para Genetic algorithm
Resumo:
A new search-space-updating technique for genetic algorithms is proposed for continuous optimisation problems. Other than gradually reducing the search space during the evolution process with a fixed reduction rate set ‘a priori’, the upper and the lower boundaries for each variable in the objective function are dynamically adjusted based on its distribution statistics. To test the effectiveness, the technique is applied to a number of benchmark optimisation problems in comparison with three other techniques, namely the genetic algorithms with parameter space size adjustment (GAPSSA) technique [A.B. Djurišic, Elite genetic algorithms with adaptive mutations for solving continuous optimization problems – application to modeling of the optical constants of solids, Optics Communications 151 (1998) 147–159], successive zooming genetic algorithm (SZGA) [Y. Kwon, S. Kwon, S. Jin, J. Kim, Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems, Computers and Structures 81 (2003) 1715–1725] and a simple GA. The tests show that for well-posed problems, existing search space updating techniques perform well in terms of convergence speed and solution precision however, for some ill-posed problems these techniques are statistically inferior to a simple GA. All the tests show that the proposed new search space update technique is statistically superior to its counterparts.
Resumo:
Based on an algorithm for pattern matching in character strings, we implement a pattern matching machine that searches for occurrences of patterns in multidimensional time series. Before the search process takes place, time series are encoded in user-designed alphabets. The patterns, on the other hand, are formulated as regular expressions that are composed of letters from these alphabets and operators. Furthermore, we develop a genetic algorithm to breed patterns that maximize a user-defined fitness function. In an application to financial data, we show that patterns bred to predict high exchange rates volatility in training samples retain statistically significant predictive power in validation samples.
Resumo:
Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
This paper describes a stressed-skin diaphragm approach to the optimal design of the internal frame of a cold-formed steel portal framing system, in conjunction with the effect of semi-rigid joints. Both ultimate and serviceability limit states are considered. Wind load combinations are included. The designs are optimized using a real-coded niching genetic algorithm, in which both discrete and continuous decision variables are processed. For a building with two internal frames, it is shown that the material cost of the internal frame can be reduced by as much as 53%, compared with a design that ignores stressed-skin action.
Resumo:
The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.
Resumo:
This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, a-optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real-world example is presented to highlight the effectiveness of the developed model and algorithm.