18 resultados para Genes, Immediate-Early


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesions involving the anterior thalamic nuclei stopped immediate early gene (IEG) activity in specific regions of the rat retrosplenial cortex, even though there were no apparent cytoarchitectonic changes. Discrete anterior thalamic lesions were made either by excitotoxin (Experiment 1) or radiofrequency (Experiment 2) and, following recovery, the rats foraged in a radial-arm maze in a novel room. Measurements made 6-12 weeks postsurgery showed that, in comparison with surgical controls, the thalamic lesions produced the same, selective patterns of Fos changes irrespective of method. Granular (caudal granular cortex and rostral granular cortex), but not dysgranular (dysgranular cortex), retrosplenial cortex showed a striking loss of Fos-positive cells. While a loss of between 79 and 89% of Fos-positive cells was found in the superficial laminae, the deeper layers appeared normal. In Experiments 3 and 4, rats 9-10 months postsurgery were placed in an activity box for 30 min. Anterior thalamic lesions (Experiment 3) led to a pronounced IEG decrease of both Fos and zif268 throughout the retrosplenial cortex that now included the dysgranular area. These IEG losses were found even though the same regions appeared normal using standard histological techniques. Lesions of the postrhinal cortex (Experiment 4) did not bring about a loss of retrosplenial IEG activity even though this region is also reciprocally connected with the retrosplenial cortex. This selective effect of anterior thalamic damage upon retrosplenial activity may both amplify the disruptive effects of anterior thalamic lesions and help to explain the posterior cingulate hypoactivity found in Alzheimer's disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suppressors of cytokine signalling (SOCS, also known as CIS and SSI) are encoded by immediate early genes that act in a feedback loop to inhibit cytokine responses and activation of 'signal transducer and activator of transcription' (STAT). Here we show that SOCS-3 is strongly tyrosine-phosphorylated in response to many growth factors, including interleukin-2 (IL-2), erythropoietin (EPO), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). The principal phosphorylation sites on SOCS-3 are residues 204 and 221 at the carboxy terminus, and upon phosphorylation tyrosine 221 interacts with the Ras inhibitor p120 RasGAP. After IL-2 stimulation, phosphorylated SOCS-3 strongly inhibits STAT5 activation but, by binding to RasGAP, maintains activation of extracellular-signal-regulated kinase (ERK). A tyrosine mutant of SOCS-3 still blocks STAT phosphorylation, but also strongly inhibits IL-2-dependent activation of ERK and cell proliferation. Moreover, it also inhibits EPO- and PDGF-induced proliferation and ERK activation. Therefore, although SOCS proteins inhibit growth-factor responses, tyrosine phosphorylation of SOCS-3 can ensure cell survival and proliferation through the Ras pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.

Results: Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable betadefensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.

Conclusions: The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activity of the immediate early gene c-fos was compared across hemispheres in rats with unilateral anterior thalamic lesions. Fos protein was quantified after rats performed a spatial working memory test in the radial-arm maze, a task that is sensitive to bilateral lesions of the anterior thalamic nuclei. Unilateral anterior thalamic lesions produced evidence of a widespread hippocampal hypoactivity, as there were significant reductions in Fos counts in a range of regions within the ipsilateral hippocampal formation (rostral CA1, rostral dentate gyrus, 'dorsal' hippocampus, presubiculum and postsubiculum). A decrease in Fos levels was also found in the rostral and caudal retrosplenial cortex but not in the parahippocampal cortices or anterior cingulate cortices. The Fos changes seem most closely linked to sites that are also required for successful task performance, supporting the notion that the anterior thalamus, retrosplenial cortex and hippocampus form key components of an interdependent neuronal network involved in spatial mnemonic processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activity of the immediate early gene c-fos was compared in rats with neurotoxic lesions of the anterior thalamic nuclei and in surgical controls. Fos levels were measured after rats had been placed in a novel room and allowed to run up and down preselected arms of a radial maze. An additional control group showed that in normal rats, this exposure to a novel room leads to a Fos increase in a number of structures, including the anterior thalamic nuclei and hippocampus. In contrast, rats with anterior thalamic lesions were found to have significantly less Fos-positive cells in an array of sites, including the hippocampus (dorsal and ventral), retrosplenial cortex, anterior cingulate cortex, and prelimbic cortex. These results show that anterior thalamic lesions disrupt multiple limbic brain regions, producing hypoactivity in sites associated in rats with spatial memory. Because many of the same sites are implicated in memory processes in humans (e.g., the hippocampus and retrosplenial cortex), this hypoactivity might contribute to diencephalic amnesia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mullerian inhibiting substance (MIS), a member of the transforming growth factor-β superfamily, induces regression of the Mullerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G1 phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFκB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IκBα expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFκB signaling pathway was required for these processes. These results identify the NFκB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations1-4 (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication (P < 10-3). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of lipopolysaccharide (LPS) in entry of Salmonella Typhimurium into epithelial cells remains unclear. In this study, we tested the ability of a series of mutants with deletions in genes for the synthesis and assembly of the O antigen and the outer core of LPS to adhere to and invade HeLa, BHK, and IB3 epithelial cells lines. Mutants devoid of O antigen, or that synthesized only one O antigen unit, or with altered O antigen chain lengths were as able as the wild type to enter epithelial cells, indicating that this polysaccharide is not required for invasion of epithelial cells in vitro. In contrast, the LPS core plays a role in the interaction of S. Typhimurium with epithelial cells. The minimal core structure required for adherence and invasion comprised the inner core and residues Glc I Gal I of the outer core. A mutant of S. Typhimurium that produced a truncated LPS core lacking the terminal galactose residue had a significant lower level of adherence to and ingestion by the three epithelial cell lines than did strains with this characteristic. Complementation of the LPS production defect recovered invasion to parental levels. Heat-killed bacteria with a core composed of Glc 1 Gal I. but not bacteria with a core composed of Glc 1, inhibited uptake of the wild type by HeLa cells. A comparison of the chemical structure of the S. Typhi core with the published chemical structure of that of S. Typhimurium indicated that the Glc I Gal 1 Glc 11 backbone is conserved in both serovars. However, S. Typhi requires a terminal glucose for maximal invasion. Therefore, our data indicate that critical saccharide residues of the outer core play different roles in the early interactions of serovars Typhi and Typhimurium with epithelial cells. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage and association has been reported between CTLA4 DNA markers and susceptibility to type 1 diabetes in some populations, but not others. We performed case-control and family-based association studies to assess if the CTLA4 A49G and intron 1 C/T polymorphisms were associated with development of early onset type 1 diabetes in the Northern Ireland population. The distribution of A49G and C/T alleles in cases (n = 144) was similar to those observed in controls (n = 307). In contrast, significant distortions in allele transmissions from informative parents to probands were observed for both the A49G (P = 0.02) and C/T (P = 0.01) polymorphisms employing 297 nuclear families. Our results suggest that the CTLA4 gene may play a minor role in the overall genetic predisposition to type 1 diabetes in this UK population.