64 resultados para Generalized linear mixed model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotion research has long been dominated by the “standard method” of displaying posed or acted static images of facial expressions of emotion. While this method has been useful it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose Generalized Additive Models and Generalized Additive Mixed Models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The mixed model GAMM approach is preferred as it can account for autocorrelation in time series data and allows emotion decoding participants to be modelled as random effects. To increase confidence in linear differences we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition we provide comments on the use of Generalized Additive Models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and implementation of a population supplementation and restoration plan for any endangered species should involve an understanding of the species’ habitat requirements prior to the release of any captive bred individuals. The freshwater pearl mussel, Margaritifera margaritifera, has undergone dramatic declines over the last century and is now globally endangered. In Northern Ireland, the release of captive bred individuals is being used to support wild populations and repatriate the species in areas where it once existed. We employed a combination of maximum entropy modelling (MAXENT) and Generalized Linear Mixed Models (GLMM) to identify ecological parameters necessary to support wild populations using GIS-based landscape scale and ground-truthed habitat scale environmental parameters. The GIS-based landscape scale model suggested that mussel occurrence was associated with altitude and soil characteristics including the carbon, clay, sand, and silt content. Notably, mussels were associated with a relatively narrow band of variance indicating that M. margaritifera has a highly specific landscape niche. The ground-truthed habitat scale model suggested that mussel occurrence was associated with stable consolidated substrates, the extent of bankside trees, presence of indicative macrophyte species and fast flowing water. We propose a three phase conservation strategy for M. margaritifera identifying suitable areas within rivers that (i) have a high conservation value yet needing habitat restoration at a local level, (ii) sites for population supplementation of existing populations and (iii) sites for species reintroduction to rivers where the mussel historically occurred but is now locally extinct. A combined analytical approach including GIS-based landscape scale and ground-truthed habitat scale models provides a robust method by which suitable release sites can be identified for the population supplementation and restoration of an endangered species. Our results will be highly influential in the future management of M. margaritifera in Northern Ireland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the development and application of a multiple linear regression model to identify how the key elements of waste and recycling infrastructure, namely container capacity and frequency of collection affect the yield from municipal kerbside recycling programmes. The overall aim of the research was to gain an understanding of the factors affecting the yield from municipal kerbside recycling programmes in Scotland. The study isolates the principal kerbside collection service offered by 32 councils across Scotland, eliminating those recycling programmes associated with flatted properties or multi occupancies. The results of a regression analysis model has identified three principal factors which explain 80% of the variability in the average yield of the principal dry recyclate services: weekly residual waste capacity, number of materials collected and the weekly recycling capacity. The use of the model has been evaluated and recommendations made on ongoing methodological development and the use of the results in informing the design of kerbside recycling programmes. The authors hope that the research can provide insights for the ongoing development of methods to optimise the design and operation of kerbside recycling programmes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advancement of flexible fixture and flexible tooling, mixed production has become possible for aircraft assembly as the manufacturing processes of different aircraft/sub-assembly models are similar. However, it is a great challenge to model the problem and provide a practical solution due to the low volume and complex constraints of aircraft assemblies. To tackle this problem, this work proposes a methodology for designing the mixed production system, and a new scheduling approach is proposed by combined backward and forward scheduling methods. These methods are validated through a real-life industrial case study. Simulation results show that the number of workstations and the cycle time for making a fuselage can be reduced by 50% and 39% respectively with the newly designed mixed-model system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A first stage collision database is assembled which contains electron-impact excitation, ionization,\r and recombination rate coefficients for B, B + , B 2+ , B 3+ , and B 4+ . The first stage database\r is constructed using the R-matrix with pseudostates, time-dependent close-coupling, and perturbative\r distorted-wave methods. A second stage collision database is then assembled which contains\r generalized collisional-radiative ionization, recombination, and power loss rate coefficients as a\r function of both temperature and density. The second stage database is constructed by solution of\r the collisional-radiative equations in the quasi-static equilibrium approximation using the first\r stage database. Both collision database stages reside in electronic form at the IAEA Labeled Atomic\r Data Interface (ALADDIN) database and the Atomic Data Analysis Structure (ADAS) open database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A first-stage collision database is assembled which contains electron-impact excitation, ionization, and recombination rate coefficients for Be, Be+, Be2+, and Be3+. The first-stage database is constructed using the R-matrix with pseudo-states, time-dependent close-coupling, and perturbative, distorted-wave methods. A second-stage collision database is then assembled which contains generalized collisional-radiative and radiated power loss coefficients. The second-stage database is constructed by solution of collisional-radiative equations in the quasi-static equilibrium approximation using the first-stage database. Both collision database stages reside in electronic form at the ORNL Controlled Fusion Atomic Data Center and in the ADAS database, and are easily accessed over the worldwide internet. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet provides a new tool to investigate old questions in experimental social psychology regarding Person x Context interaction. We examined the interaction of self-reported shyness and context on computer-mediated communication measures. Sixty female undergraduates unfamiliar were paired in dyads and engaged in a 10 min free chat conversation on the Internet with and without a live webcam. Free chat conversations were archived, transcripts were objectively coded for communication variables, and a linear mixed model used for data analysis of dyadic interaction was performed on each communication measure. As predicted, increases in self-reported shyness were significantly related to decreases in the number of prompted self-disclosures (after controlling for the number of opportunities to self-disclose) only in the webcam condition. Self-reported shyness was not related to the number of prompted self-disclosures in the no webcam condition, suggesting that shyness was context dependent. The present study appears to be the first to objectively code measures of Internet behaviour in relation to the study of personality in general and shyness in particular. Theoretical and clinical implications for understanding the contextual nature of shyness are discussed. (C) 2006 Elsevier Inc. All rights reserved.