80 resultados para Generalized Riemann-Liouville Fractional Derivative


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymptotic estimates of the norms of orbits of certain operators that commute with the classical Volterra operator V acting on L-P[0,1], with 1 0, but also to operators of the form phi (V), where phi is a holomorphic function at zero. The method to obtain the estimates is based on the fact that the Riemann-Liouville operator as well as the Volterra operator can be related to the Levin-Pfluger theory of holomorphic functions of completely regular growth. Different methods, such as the Denjoy-Carleman theorem, are needed to analyze the behavior of the orbits of I - cV, where c > 0. The results are applied to the study of cyclic properties of phi (V), where phi is a holomorphic function at 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytic formulation of dynamic electro-thermally induced nonlinearity is developed for a general resistive element, yielding a self-heating circuit model based on a fractional derivative. The model explains the 10 dB/decade slope of the intermodulation products observed in two-tone testing. Two-tone testing at 400 MHz of attenuators, microwave chip terminations, and coaxial terminations is reported with tone spacing ranging from 1 to 100 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuum distorted-wave eikonal-initial-state (CDW-EIS) theory of Crothers and McCann (Crothers DSF and McCann JF, 1983 J. Phys. B: At. Mol. Opt. Phys. 16 3229 ) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS, to incorporate the azimuthal ange dependence into the final-state wavefunction. This is accomplished by the analytic continuation of hydrogenic-like wavefunctions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 ke V u^{-1}, the total CDW-EIS ionization cross section falls off, with decreasing energy, too quickly in comparison with experimental data by Crothers and McCann. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment, by including contributions from non-zero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inertia-corrected Debye model of rotational Brownian motion of polar molecules was generalized by Coffey et al. [Phys. Rev. E, 65, 32 102 (2002)] to describe fractional dynamics and anomalous rotational diffusion. The linear- response theory of the normalized complex susceptibility was given in terms of a Laplace transform and as a function of frequency. The angular-velocity correlation function was parametrized via fractal Mittag-Leffler functions. Here we apply the latter method and complex-contour integral- representation methods to determine the original time-dependent amplitude as an inverse Laplace transform using both analytical and numerical approaches, as appropriate. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on our findings of the bright, pulsating, helium atmosphere white dwarf GD 358, based on time-resolved optical spectrophotometry. We identify 5 real pulsation modes and at least 6 combination modes at frequencies consistent with those found in previous observations. The measured Doppler shifts from our spectra show variations with amplitudes of up to 5.5 km s-1 at the frequencies inferred from the flux variations. We conclude that these are variations in the line-of-sight velocities associated with the pulsational motion. We use the observed flux and velocity amplitudes and phases to test theoretical predictions within the convective driving framework, and compare these with similar observations of the hydrogen atmosphere white dwarf pulsators (DAVs). The wavelength dependence of the fractional pulsation amplitudes (chromatic amplitudes) allows us to conclude that all five real modes share the same spherical degree, most likely, l=1. This is consistent with previous identifications based solely on photometry. We find that a high signal-to-noise mean spectrum on its own is not enough to determine the atmospheric parameters and that there are small but significant discrepancies between the observations and model atmospheres. The source of these remains to be identified. While we infer Teff =24 kK and log g ~ 8.0 from the mean spectrum, the chromatic amplitudes, which are a measure of the derivative of the flux with respect to the temperature, unambiguously favour a higher effective temperature, 27 kK, which is more in line with independent determinations from ultra-violet spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of charged particles in partially turbulent magnetic systems is investigated from first principles. A generalized compound transport model is proposed, providing an explicit relation between the mean-square deviation of the particle parallel and perpendicular to a magnetic mean field, and the mean-square deviation which characterizes the stochastic field-line topology. The model is applied in various cases of study, and the relation to previous models is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The singular continuous spectrum of the Liouville operator of quantum statistical physics is, in general, properly included in the difference of the spectral values of the singular continuous spectrum of the associated Hamiltonian. The absolutely continuous spectrum of the Liouvillian may arise from a purely singular continuous Hamiltonian. We provide the correct formulas for the spectrum of the Liouville operator and show that the decaying states of the singular continuous subspace of the Hamiltonian do not necessarily contribute to the absolutely continuous subspace of the Liouvillian.