109 resultados para Gamification, Matematica, HTML5, CSS3, JavaScript, JSON, Web App, WebApp, GaMaths, Android
Resumo:
Summary: We present a new R package, diveRsity, for the calculation of various diversity statistics, including common diversity partitioning statistics (?, G) and population differentiation statistics (D, GST ', ? test for population heterogeneity), among others. The package calculates these estimators along with their respective bootstrapped confidence intervals for loci, sample population pairwise and global levels. Various plotting tools are also provided for a visual evaluation of estimated values, allowing users to critically assess the validity and significance of statistical tests from a biological perspective. diveRsity has a set of unique features, which facilitate the use of an informed framework for assessing the validity of the use of traditional F-statistics for the inference of demography, with reference to specific marker types, particularly focusing on highly polymorphic microsatellite loci. However, the package can be readily used for other co-dominant marker types (e.g. allozymes, SNPs). Detailed examples of usage and descriptions of package capabilities are provided. The examples demonstrate useful strategies for the exploration of data and interpretation of results generated by diveRsity. Additional online resources for the package are also described, including a GUI web app version intended for those with more limited experience using R for statistical analysis. © 2013 British Ecological Society.
Resumo:
Personal response systems using hardware such as 'clickers' have been around for some time, however their use is often restricted to multiple choice questions (MCQs) and they are therefore used as a summative assessment tool for the individual student. More recent innovations such as 'Socrative' have removed the need for specialist hardware, instead utilising web-based technology and devices common to students, such as smartphones, tablets and laptops. While improving the potential for use in larger classrooms, this also creates the opportunity to pose more engaging open-response questions to students who can 'text in' their thoughts on questions posed in class. This poster will present two applications of the Socrative system in an undergraduate psychology curriculum which aimed to encourage interactive engagement with course content using real-time student responses and lecturer feedback. Data is currently being collected and result will be presented at the conference.
The first application used Socrative to pose MCQs at the end of two modules (a level one Statistics module and level two Individual Differences Psychology module, class size N≈100), with the intention of helping students assess their knowledge of the course. They were asked to rate their self-perceived knowledge of the course on a five-point Likert scale before and after completing the MCQs, as well as their views on the value of the revision session and any issues that had with using the app. The online MCQs remained open between the lecture and the exam, allowing students to revisit the questions at any time during their revision.
This poster will present data regarding the usefulness of the revision MCQs, the metacognitive effect of the MCQs on student's judgements of learning (pre vs post MCQ testing), as well as student engagement with the MCQs between the revision session and the examination. Student opinions on the use of the Socrative system in class will also be discussed.
The second application used Socrative to facilitate a flipped classroom lecture on a level two 'Conceptual Issues in Psychology' module, class size N≈100). The content of this module requires students to think critically about historical and contemporary conceptual issues in psychology and the philosophy of science. Students traditionally struggle with this module due to the emphasis on critical thinking skills, rather than simply the retention of concrete knowledge. To prepare students for the written examination, a flipped classroom lecture was held at the end of the semester. Students were asked to revise their knowledge of a particular area of Psychology by assigned reading, and were told that the flipped lecture would involve them thinking critically about the conceptual issues found in this area. They were informed that questions would be posed by the lecturer in class, and that they would be asked to post their thoughts using the Socrative app for a class discussion. The level of preparation students engaged in for the flipped lecture was measured, as well as qualitative opinions on the usefulness of the session. This poster will discuss the level of student engagement with the flipped lecture, both in terms of preparation for the lecture, and engagement with questions posed during the lecture, as well as the lecturer's experience in facilitating the flipped classroom using the Socrative platform.
Resumo:
This paper introduces a novel interface designed to help blind and visually impaired people to explore and navigate on the Web. In contrast to traditionally used assistive tools, such as screen readers and magnifiers, the new interface employs a combination of both audio and haptic features to provide spatial and navigational information to users. The haptic features are presented via a low-cost force feedback mouse allowing blind people to interact with the Web, in a similar fashion to their sighted counterparts. The audio provides navigational and textual information through the use of non-speech sounds and synthesised speech. Interacting with the multimodal interface offers a novel experience to target users, especially to those with total blindness. A series of experiments have been conducted to ascertain the usability of the interface and compare its performance to that of a traditional screen reader. Results have shown the advantages that the new multimodal interface offers blind and visually impaired people. This includes the enhanced perception of the spatial layout of Web pages, and navigation towards elements on a page. Certain issues regarding the design of the haptic and audio features raised in the evaluation are discussed and presented in terms of recommendations for future work.