28 resultados para GaN Buffer


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental observations are presented demonstrating that the use of a gold-coated foam layer on the surface of a laser-driven target substantially reduces its hydrodynamic breakup during the acceleration phase. The data suggest that this results from enhanced thermal smoothing during the early-time imprint stage of the interaction. The target's kinetic energy and the level of parametric instability growth are shown to remain essentially unchanged from that of a conventionally driven target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a dynamic buffer man-agement scheme for QoS control of multimedia services in be-yond 3G wireless systems. The scheme is studied in the context of the state-of-the-art 3.5G system i.e. the High Speed Downlink Packet Access (HSDPA) which enhances 3G UMTS to support high-speed packet switched services. Unlike earlier systems, UMTS-evolved systems from HSDPA and beyond incorporate mechanisms such as packet scheduling and HARQ in the base station necessitating data buffering at the air interface. This introduces a potential bottleneck to end-to-end communication. Hence, buffer management at the air interface is crucial for end-to-end QoS support of multimedia services with multi-plexed parallel diverse flows such as video and data in the same end-user session. The dynamic buffer management scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows is investigated via extensive HSDPA simulations. The impact of the scheme on end-to-end traffic performance is evaluated with an example multimedia session comprising a real-time streaming flow concurrent with TCP-based non real-time flow. Results demonstrate that the scheme can guar-antee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting the non real-time flow from starva-tion resulting in improved end-to-end throughput performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents and investigates a dynamic
buffer management scheme for QoS control of multimedia
services in a 3.5G wireless system i.e. the High Speed Downlink
Packet Access (HSDPA). HSDPA was introduced to enhance
UMTS for high-speed packet switched services. With HSDPA,
packet scheduling and HARQ mechanisms in the base station
require data buffering at the air interface thus introducing a
potential bottleneck to end-to-end communication. Hence, for
multimedia services with multiplexed parallel diverse flows
such as video and data in the same end-user session, buffer
management schemes in the base station are essential to support
end-to-end QoS provision. We propose a dynamic buffer management
scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows in the paper. The end-to-end performance impact of the scheme is evaluated with an example multimedia session comprising a real-time streaming
flow concurrent with TCP-based non real-time flow via extensive HSDPA simulations. Results demonstrate that the scheme can guarantee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting non real-time flow from starvation resulting in improved end-to-end throughput performance