55 resultados para GDP elasticity
Resumo:
Quantitative application of elastoplastic theory to the yielding behaviour of natural soils has always been uncertain. Part of the reason is that the theory was developed for reconstituted materials with isotropic structure, in contrast to natural soils that are usually anisotropic. The approach considered in this study assumes that pre-yielding behaviour is governed by the theory of linear anisotropic elasticity and that yield loci in the mean effective stress ( p') – deviator stress (q) plane are aligned approximately along the coefficient of earth pressure (K0) line. The assumption of a rotated yield locus associated with anisotropic elastic behaviour within the state boundary surface indicates that the elastic wall within the state boundary surface is inclined. The form of the state boundary surface has been determined mathematically in terms of anisotropic elastic and Cam-Clay soil parameters. Stress path tests were conducted on samples of Belfast Upper Boulder Clay removed from a depth of 28 m below ground surface. Good agreement was found between predicted and measured yield loci. The study also examined the influence of subsequent isotropic compression on the yielding characteristics of the natural clay. The indications are that the anisotropy developed during deposition disappears when the sample is loaded to a stress level at least twice the stress generated during the original deposition process. The methods developed in the paper have also been applied to test results reported previously on Winnipeg clay, and good agreement was obtained.
Resumo:
Sampling and specimen preparation produce changes in mean effective stresses and pore water pressures, even with ‘perfect sampling’. The paper takes an existing simplified three-parameter cross-anisotropic elastic model and uses it to model these changes. The required ratio of cross-anisotropic parameters J/3G* can be obtained from standard CIU triaxial tests. If measurements are also made of suctions in unloaded specimens in the laboratory, then a combination of J/3G*, the measured suction, and the effective overburden pressure permits an estimation of the horizontal effective pressure and the K 0 ‘at rest’ coefficient. This can be helpful in numerical modelling that needs to start from in situ conditions, and in planning pressure levels for reconsolidation of clay specimens in the laboratory. Tests were done on Belfast Upper Boulder Clay from a depth of 28 m. Values of horizontal in situ effective stress estimated from these measurements compare favorably with conventional estimates of the ‘at rest’ coefficient K 0 and the overconsolidation ratio. Estimates of horizontal stress in London Clay were made using published data and the results compared with actual measurements. Again reasonable agreement was obtained.
Resumo:
This paper uses matched employee-employer LIAB data to provide panel estimates of the structure of labor demand in western Germany, 1993-2002, distinguishing between highly skilled, skilled, and unskilled labor and between the manufacturing and service sectors. Reflecting current preoccupations, our demand analysis seeks also to accommodate the impact of technology and trade in addition to wages. The bottom-line interests are to provide elasticities of the demand for unskilled (and other) labor that should assist in short-run policy design and to identify the extent of skill biases or otherwise in trade and technology.
Resumo:
A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i) the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii) cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii) the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs) in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.
Resumo:
The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.
Resumo:
This paper contributes to a debate on what constitutes rehabilitation. Current criminal justice practice tends to focus on lowering recidivism by utilising strategies geared towards cognitive behavioural modification and educational/vocational skill development. The paper focuses on the perspectives of custodial educators in a Juvenile Justice Centre in Northern Ireland. Their definition of rehabilitation is less concerned about lowering recidivism and instead focuses more on meeting the needs of the young people entering custody, more so than preparing them for their return to the community. Education staff present a model of rehabilitation that is fundamentally about improving the lives of young people. Despite expecting young people to return to custody Education staff contend that young people’s lives improved because they were exposed to a welcoming, caring and pro‐social environment which has helped the young people transform inttody.
Resumo:
The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.
Resumo:
We found that engagement of beta 2 integrins on human neutrophils induced activation of RhoA, as indicated by the increased ratio of GTP:GTP 1 GDP recovered on RhoA and translocation of RhoA to a membrane fraction. The clustering of beta 2 integrins also induced a time-dependent increase in GDP bound to RhoA, which correlated with beta 2 integrin-induced activation of p190RhoGAP. The activation of p190RhoGAP was completely blocked by [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] (PP1), a selective inhibitor of Src family tyrosine kinases. However, clustering of beta 2 integrins did not increase the basal tyrosine phosphorylation of p190RhoGAP, nor did it affect the amount of p120RasGAP bound to p190RhoGAP. Instead, the beta 2 integrin-induced activation of p190RhoGAP was accompanied by increased tyrosine phosphorylation of a p190RhoGAP-associated protein, p120RasGAP, and accumulation of both p120RasGAP and p190RhoGAP in a membrane fraction. PP1 blocked the beta 2 integrin-induced phosphorylation of p120RasGAP, as well as the translocation of p190RhoGAP and p120RasGAP, but it did not affect the accumulation of RhoA in the membrane fraction. In agreement with the mentioned findings, PP1 also increased the GTP:GTP 1 GDP ratio recovered on RhoA immunoprecipitated from beta2 integrin-stimulated cells. Thus, in neutrophils, beta 2 integrin-induced activation of p190RhoGAP requires a signal from a Src family tyrosine kinase, but it does not occur via the signaling pathway responsible for activation of RhoA.
Resumo:
This study described the drug release, rheological (dynamic and flow) and textural/mechanical properties of a series of formulations composed of 15% w/w polymethylvinylether-co-maleic anhydride (PMVE-MA), 0-9% w/w polyvinylpyrrolidone (PVP) and containing 1-5% w/w tetracycline hydrochloride, designed for the treatment of periodontal disease. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing the concentration of PVP sequentially increased the zero-rate viscosity (derived from the Cross model) and the hardness and compressibility of the formulations (derived from texture profile analysis). These affects may be accredited to increased polymer entanglement and, in light of the observed synergy between the two polymers with respect to their textural and rheological properties, interaction between PVP and PMVE-MA. Increasing the concentration of PVP increased the storage and loss moduli yet decreased the loss tangent of all formulations, indicative of increased elastic behaviour. Synergy between the two polymers with respect to their viscoelastic properties was observed. Increased adhesiveness, associated with increased concentrations of PVP was ascribed to the increasing bioadhesion and tack of the formulations. The effect of increasing drug concentration on the rheological and textural properties was dependent on PVP concentration. At lower concentrations (0, 3% w/w) no effect was observed whereas, in the presence of 9% w/w PVP, increasing drug concentration increased formulation elasticity, zero rate viscosity, hardness and compressibility. These observations were ascribed to the greater mass of suspended drug in formulations containing the highest concentration of PVP. Drug release from formulations containing 6 and 9% PVP (and 5% w/w drug) was prolonged and swelling/diffusion controlled. Based on the drug release, rheological and textural properties, it is suggested that the formulation containing 15% w/w PMVE-MA, 6% w/w PVP and tetracycline hydrochloride (5% w/w) may be useful for the treatment of periodontal disease.