4 resultados para Fundamental species
Resumo:
Human activity has undoubtedly had a major impact on Holocene forested ecosystems, with the concurrent expansion of plants and animals associated with cleared landscapes and pasture, also known as 'culture-steppe'. However, this anthropogenic perspective may have underestimated the contribution of autogenic disturbance (e.g. wind-throw, fire), or a mixture of autogenic and anthropogenic processes, within early Holocene forests. Entomologists have long argued that the north European primary forest was probably similar in structure to pasture woodland. This idea has received support from the conservation biologist Frans Vera, who has recently strongly argued that the role of large herbivores in maintaining open forests in the primeval landscapes of Europe has been seriously underestimated. This paper reviews this debate from a fossil invertebrate perspective and looks at several early Holocene insect assemblages. Although wood taxa are indeed important during this period, species typical of open areas and grassland and dung beetles, usually associated with the dung of grazing animals, are persistent presences in many early woodland faunas. We also suggest that fire and other natural disturbance agents appear to have played an important ecological role in some of these forests, maintaining open areas and creating open vegetation islands within these systems. More work, however, is required to ascertain the role of grazing animals, but we conclude that fossil insects have a significant contribution to make to this debate. This evidence has fundamental implications in terms of how the palaeoecological record is interpreted, particularly by environmental archaeologists and palaeoecologists who may be more interested in identifying human-environment interactions rather than the ecological processes which may be preserved within palaeoecological records.
Resumo:
Invasive species may threaten the fundamental role played by native macroinvertebrate shredders in determining energy flow and the trophic dynamics of freshwater ecosystems. Functionally, amphipods have long been regarded as mainly shredders, but they are increasingly recognized as major predators of other macroinvertebrate taxa. Furthermore, intraguild predation (IGP) between native and invasive amphipods underlies many species displacements. We used laboratory mesocosms to investigate what might happen to shredders and leaf-litter processing in water bodies invaded by the highly predatory Ponto-Caspian amphipod Dikerogammarus villosus, which is spreading rapidly throughout Europe and may soon invade the North American Great Lakes. The leaf-shredding efficiency of D. villosus was significantly lower than that of 3 Gammarus species (2 native and 1 invasive) that D. villosus has either already displaced or may be currently displacing in The Netherlands. In addition, D. villosus was a major predator of all of these native and invasive amphipod shredders and of a common isopod shredder Asellus aquaticus. Leaf processing in Gammarus and Asellus mesocosms declined rapidly in the presence of D. villosus and ceased altogether within 4 d because by then, all potential shredders had been killed and consumed. Furthermore, the shredding efficiency of surviving amphipods and isopods declined significantly within 2 d of the release of D. villosus, a result indicating that predator-avoidance behavior may override leaf processing. We discuss the implications of these direct and indirect effects of D. villosus invasions and species displacements on community structure and litter processing in aquatic ecosystems. © 2011 The North American Benthological Society.
--------------------------------------------------------------------------------
Reaxys Database Information|
Resumo:
The maintenance of biodiversity is a fundamental theme of the Marine Strategy Framework Directive. Appropriate indicators to monitor change in biodiversity, along with associated targets representing "good environmental status" (GES), are required to be in place by July 2012. A method for selecting species-specific metrics to fulfil various specified indicator roles is proposed for demersal fish communities. Available data frequently do not extend far enough back in time to allow GES to be defined empirically. In such situations, trends-based targets offer a pragmatic solution. A method is proposed for setting indicator-level targets for the number of species-specific metrics required to meet their trends-based metric-level targets. This is based on demonstrating significant departures from the binomial distribution. The procedure is trialled using North Sea demersal fish survey data. Although fisheries management in the North Sea has improved in recent decades, management goals to stop further decline in biodiversity, and to initiate recovery, are yet to be met.
Resumo:
Species-area relationships (SAR) are fundamental in the understanding of biodiversity patterns and of critical importance for predicting species extinction risk worldwide. Despite the enormous attention given to SAR in the form of many individual analyses, little attempt has been made to synthesize these studies. We conducted a quantitative meta-analysis of 794 SAR, comprising a wide span of organisms, habitats and locations. We identified factors reflecting both pattern-based and dynamic approaches to SAR and tested whether these factors leave significant imprints on the slope and strength of SAR. Our analysis revealed that SAR are significantly affected by variables characterizing the sampling scheme, the spatial scale, and the types of organisms or habitats involved. We found that steeper SAR are generated at lower latitudes and by larger organisms. SAR varied significantly between nested and independent sampling schemes and between major ecosystem types, but not generally between the terrestrial and the aquatic realm. Both the fit and the slope of the SAR were scale-dependent. We conclude that factors dynamically regulating species richness at different spatial scales strongly affect the shape of SAR. We highlight important consequences of this systematic variation in SAR for ecological theory, conservation management and extinction risk predictions.