191 resultados para Functional jaw orthopedics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Acute ankle sprains are usually managed functionally, with advice to undertake progressive weight-bearing and walking. Mechanical loading is an important modular of tissue repair; therefore, the clinical effectiveness of walking after ankle sprain may be dose dependent. The intensity, magnitude and duration of load associated with current functional treatments for ankle sprain are unclear.

AIM: To describe physical activity (PA) in the first week after ankle sprain and to compare results with a healthy control group.

METHODS: Participants (16-65 years) with an acute ankle sprain were randomised into two groups (standard or exercise). Both groups were advised to apply ice and compression, and walk within the limits of pain. The exercise group undertook additional therapeutic exercises. PA was measured using an activPAL accelerometer, worn for 7 days after injury. Comparisons were made with a non-injured control group.

RESULTS: The standard group were significantly less active (1.2 ± 0.4 h activity/day; 5621 ± 2294 steps/day) than the exercise (1.7 ± 0 .7 h/day, p=0.04; 7886 ± 3075 steps/day, p=0.03) and non-injured control groups (1.7 ± 0.4 h/day, p=0.02; 8844 ± 2185 steps/day, p=0.002). Also, compared with the non-injured control group, the standard and exercise groups spent less time in moderate (38.3 ± 12.7 min/day vs 14.5 ± 11.4 min/day, p=0.001 and 22.5 ± 15.9 min/day, p=0.003) and high-intensity activity (4.1 ± 6.9 min/day vs 0.1 ± 0.1 min/day, p=0.001 and 0.62 ± 1.0 min/day p=0.005).

CONCLUSION: PA patterns are reduced in the first week after ankle sprain, which is partly ameliorated with addition of therapeutic exercises. This study represents the first step towards developing evidence-based walking prescription after acute ankle sprain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z) (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fed at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(l) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(l)-Fe(l) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride, Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(l) species, but cannot bond with the Fe(l)-Fe(l) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (1) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(l)-Fe(l) complexes; and (iii) in the e(g)-2pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The important role of alkali additives in heterogeneous catalysis is, to a large extent, related to the high promotion effect they have on many fundamental reactions. The wide application of alkali additives in industry does not, however, reflect a thorough understanding of the mechanism of their promotional abilities. To investigate the physical origin of the alkali promotion effect, we have studied CO dissociation on clean Rh(111) and K-covered Rh(111) surfaces using density functional theory. By varying the position of potassium atoms relative to a dissociating CO, we have mapped out the importance of different K effects on the CO dissociation reactions. The K-induced changes in the reaction pathways and reaction barriers have been determined; in particular, a large reduction of the CO dissociation barrier has been identified. A thorough analysis of this promotion effect allows us to rationalize both the electronic and the geometrical factors that govern alkali promotion effect: (i) The extent of barrier reductions depends strongly on how close K is to the dissociating CO. (ii) Direct K-O bonding that is in a very short range plays a crucial role in reducing the barrier. (iii) K can have a rather long-range effect on the TS structure, which could reduce slightly the barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G894T endothelial nitric oxide synthase (eNOS) polymorphism results in a Glu to Asp substitution at position 298. This position is located externally on the protein and as the regulation of eNOS is dependent on its subcellular localization and interaction with modulatory proteins, we aimed to address whether the substitution of Asp at 298 had any effect on these mechanisms. Initially, we developed a novel method to accurately determine molar quantities of each variant by expressing them as green fluorescent protein (GFP) fusion proteins and using recombinant adenoviruses to facilitate transient infection of human microvascular endothelial cells. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting of eNOS298Asp revealed a 135-kDa proteolytic fragment which was not present with eNOS298Glu. This proteolysis was prevented by using LDS buffer confirming that this differential cleavage is an artefact of sample preparation and unlikely to occur intracellularly. Nitric oxide was measured following stimulation with calcium ionophore or oestrogen in the presence of varying sepiapterin concentrations. GFP fluorescence was used to quantify the amount of fusion protein and calculate intracellular specific activity. There was no significant difference in intracellular specific activity between Glu298 and Asp298 eNOS in response to calcium ionophore or oestrogen. Tetrahydrobiopterin supplementation increased eNOS activity of both variants in an identical manner. The presence of the GFP also facilitated the visualization of the variants by confocal microscopy and demonstrated that both localized to the plasma membrane and the Golgi. These findings demonstrate that the Asp substitution at 298 does not have a major effect in modulating eNOS activity in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1) is a cytoprotective molecule and increased expression in experimental transplant models correlates with reduced graft injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates gene expression; a short number of repeats (S-allele