30 resultados para Franklin Mine
Hydrogeology of flooded, abandoned mine workings - an integrated hydraulic/hydrogeochemical analysis
Resumo:
Since 1995, when pumps were withdrawn from deep mines in East Fife (Scotland), mine waters have been rebounding throughout the coalfield. Recently, it has become necessary to pump and treat these waters to prevent their uncontrolled emergence at the surface. However, even relatively shallow pumping to surface treatment lagoons of the initially chemically-stratified mine water from a shaft in the coastal Frances Colliery during two dynamic step-drawdown tests to establish the hydraulic characteristics of the system resulted in rapid breakdown of the stratification within 24 h and a poor pumped water quality with high dissolved Fe loading. Further, data are presented here of hydrochemical and isotopic sampling of the extended pump testing lasting up to several weeks. The use in particular of the environmental isotopes d18O, d2H, d34S, 3H, 13C and 14C alongside hydrochemical and hydraulic pump test data allowed characterisation of the Frances system dynamics, mixing patterns and water quality sources feeding into this mineshaft under continuously pumped conditions. The pumped water quality reflects three significant components of mixing: shallow freshwater, seawater, and leakage from the surface treatment lagoons. In spite of the early impact of recirculating lagoon waters on the hydrochemistries, the highest Fe loadings in the longer-term pumped waters are identified with a mixed freshwater–seawater component affected by pyrite oxidation/melanterite dissolution in the subsurface system.
Resumo:
We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet star radius ratio and inclination of the system, which were found to be R-p/R-star = 0.1664(-0.0018)(+0.0011) and i = 81.73(-0.04)(+0.13), respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi(2) = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T-c(0) = 2454632.62610 +/- 0.00006 HJD and P = 1.3061864 +/- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.
Resumo:
In complex hydrogeological environments the effective management of groundwater quality problems by pump-and-treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C-, H-, O-, S-stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (d34S(SO4) ~= -1.6‰, d18O(SO4) ~= +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in-mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.