106 resultados para Forest degradation
Resumo:
We examined the cost of conserving species as climate changes using Madagascar as an example. We used a Maxent species distribution model to predict the ranges of 74 plant species endemic to the forests of Madagascar from 2000-2080 in three climate scenarios. We set a conservation target of achieving 10,000 hectares of forest cover for each species, and calculated the cost of achieving this target under each climate scenario. We interviewed natural forest restoration project managers and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species’ ranges, the overlap between species’ ranges and existing or planned protected areas, and the overlap between species’ ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha), avoidance of forest degradation (loss of biomass) in community-managed areas ($160-576/ha), avoidance of deforestation in unprotected areas ($252-1069/ha), and establishment of forest on non-forested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that though forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.
Resumo:
In this study the fate of naphthalene, fluorene and pyrene were investigated in the presence and absence of enchytraeid worms. Microcosms were used, which enabled the full fate of 14C-labelled PAHs to be followed. Between 60 and 70% of naphthalene was either mineralised or volatilised, whereas over 90% of the fluorene and pyrene was retained within the soil. Mineralisation and volatilisation of naphthalene was lower in the presence of enchytraeid worms. The hypothesis that microbial mineralisation of naphthalene was limited by enchytraeids because they reduce nutrient availability, and hence limit microbial carbon turnover in these nutrient poor soils, was tested. Ammonia concentrations increased and phosphorus concentrations decreased in all microcosms over the 56 d experimental period. The soil nutrient chemistry was only altered slightly by enchytraeid worms, and did not appear to be the cause of retardation of naphthalene mineralisation. The results suggest that microbial availability and volatilisation of naphthalene is altered as it passes through enchytraeid worms due to organic material encapsulation. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are an important class of persistent organic pollutants (POPs) in the environment and accumulate in forest soils. These soils are often dominated by ectomycorrhizal (EcM) roots, but little is known about how EcM fungi degrade PAHs, or the overall effect of field colonized EcM roots on the fate of PAHs. The ability of eight EcM fungi to degrade PAHs in liquid culture spiked with 14C labelled PAHs was investigated. Microcosms were used to determine the impact of naturally colonized mycorrhizal pine seedlings on PAH mineralization and volatilization. Only two EcM fungi (Thelephora terrestris and Laccaria laccata) degraded at least one PAH and none were able to mineralize the PAHs in pure culture. Where degradation occurred, the compounds were only mono-oxygenated. EcM pine seedlings did not alter naphthalene mineralization or volatilization but retarded fluorene mineralization by 35% compared with unplanted, ectomycorrhizosphere soil inoculated, microcosms. The EcM fungi possessed limited PAH degrading abilities, which may explain why EcM dominated microcosms retarded fluorene mineralization. This observation is considered in relation to the 'Gadgil-effect', where retarded litter decomposition has been observed in the presence of EcM roots. © New Phytologist (2004).
Resumo:
Poly-L-Lactide is a bioresorbable polymer which degrades through hydrolysis of its ester linkage influenced by initial molecular weight and degree of crystallinity. Polymers belonging to the aliphatic polyester family currently represent the most attractive group of polymers that meet the medical and physical demands for safe clinical applications. Compression moulded PLLA pellets were produced as rods, sterilized and degraded both in vitro and in vivo (sub-dermal implantation model). The material molecular weight, crystallinity, mechanical strength and thermal properties were evaluated. In both in vitro and in vivo environments, degradation proceeded at the same rate and followed the general sequence of aliphatic polyester degradation, ruling out enzymes accelerating the degradation rate in vivo. By 44 weeks duration of implantation the PLLA rods were still biocompatible, before any mass loss was observed.
Resumo:
Poly-L-lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioresorbable. The degradation of PLLA proceeds through hydrolysis of the ester linkages in the polymer's backbone; however, the time for the complete resorption of orthopaedic devices manufactured from PLLA is known to be in excess of five years in a normal physiological environment. To evaluate the degradation of PLLA in an accelerated time period, PLLA pellets were processed by compression moulding into tensile test specimens, prior to being sterilized by ethylene oxide gas (EtO) and degraded in a phosphate-buffered solution (PBS) at both 50°C and 70°C. On retrieval, at predetermined time intervals, procedures were used to evaluate the material's molecular weight, crystallinity, mechanical strength, and thermal properties. The results from this study suggest that at both 50°C and 70°C, degradation proceeds by a very similar mechanism to that observed at 37°C in vitro and in vivo. The degradation models developed also confirmed the dependence of mass loss, melting temperature, and glass transition temperature (Tg) on the polymer's molecular weight throughout degradation. Although increased temperature appears to be a suitable method for accelerating the degradation of PLLA, relative to its physiological degradation rate, concerns still remain over the validity of testing above the polymer's Tg and the significance of autocatalysis at increased temperatures.
Resumo:
The ageing behaviour of ultra-high molecular weight polyethylene (UHMWPE) has been studied following gamma irradiation (25 or 40 kGy) in air. Accelerated ageing procedures used elevated temperature (70°C) and/or pressurised oxygen (5 bar). Shelf-aged UHMWPE was also studied. The variation in surface density and mechanical properties were determined following the various sterilisation and ageing treatments. Microabrasive wear testing was also performed. Wear rates were found to correlate well with stress at break for sterilised and aged UHMWPE but not with elongation to failure. It is proposed that the wear mechanism is fracture dominated and occurs following some disentanglement of the polymer chains. Wear also depends upon embrittlement of the surface layer due to its processing and ageing. Elongation to failure in a tensile test is not a good measure of this embrittlement whereas the microabrasion test provides more surface sensitive information concerning this property.
Resumo:
Human activity has undoubtedly had a major impact on Holocene forested ecosystems, with the concurrent expansion of plants and animals associated with cleared landscapes and pasture, also known as 'culture-steppe'. However, this anthropogenic perspective may have underestimated the contribution of autogenic disturbance (e.g. wind-throw, fire), or a mixture of autogenic and anthropogenic processes, within early Holocene forests. Entomologists have long argued that the north European primary forest was probably similar in structure to pasture woodland. This idea has received support from the conservation biologist Frans Vera, who has recently strongly argued that the role of large herbivores in maintaining open forests in the primeval landscapes of Europe has been seriously underestimated. This paper reviews this debate from a fossil invertebrate perspective and looks at several early Holocene insect assemblages. Although wood taxa are indeed important during this period, species typical of open areas and grassland and dung beetles, usually associated with the dung of grazing animals, are persistent presences in many early woodland faunas. We also suggest that fire and other natural disturbance agents appear to have played an important ecological role in some of these forests, maintaining open areas and creating open vegetation islands within these systems. More work, however, is required to ascertain the role of grazing animals, but we conclude that fossil insects have a significant contribution to make to this debate. This evidence has fundamental implications in terms of how the palaeoecological record is interpreted, particularly by environmental archaeologists and palaeoecologists who may be more interested in identifying human-environment interactions rather than the ecological processes which may be preserved within palaeoecological records.
Resumo:
This paper presents a new review of our knowledge of the ancient forest beetle fauna from Holocene archaeological and palaeoecological sites in Great Britain and Ireland. It examines the colonisation, dispersal and decline of beetle species, highlighting the scale and nature of human activities in the shaping of the landscape of the British Isles. In particular, the paper discusses effects upon the insect fauna, and examines in detail the fossil record from the Humberhead Levels, eastern England. It discusses the local extirpation of up to 40 species in Britain and 15 species in Ireland. An evaluation of the timing of extirpations is made, suggesting that many species in Britain disappear from the fossil record between c. 3000 cal BC and 1000 cal BC (c. 5000-3000 cal BP), although some taxa may well have survived until considerably later. In Ireland, there are two distinct trends, with a group of species which seem to be absent after c. 2000 cal BC (c. 4000 cal BP) and a further group which survives until at least as late as the medieval period. The final clearance of the Irish landscape over the last few hundred years was so dramatic, however, that some species which are not especially unusual in a British context were decimated. Reasons behind the extirpation of taxa are examined in detail, and include a combination of forest clearance and human activities, isolation of populations, lack of temporal continuity of habitats, edaphic and competition factors affecting distribution of host trees (particularly pine), lack of forest fires and a decline in open forest systems. The role of climate change in extirpations is also evaluated. Consideration is given to the significance of these specialised ancient forest inhabitants in Ireland in the absence of an early Holocene land-bridge which suggests that colonisation was aided by other mechanisms, such as human activities and wood-rafting. Finally, the paper discusses the Continental origins of the British and Irish fauna and its hosts and the role played by European glacial refugia.