122 resultados para Forensic Tools


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonrecombinant, uniparentally inherited nature of organelle genomes
makes them useful tools for evolutionary studies. However, in plants, detecting
useful polymorphism at the population level is often difficult because of the
low level of substitutions in the chloroplast genome, and because of the slow
substitution rates and intramolecular recombination of mtDNA. Chloroplast
microsatellites represent potentially useful markers to circumvent this problem
and, to date, studies have demonstrated high levels of intraspecific variability.
Here,we discuss the use of these markers in ecological and evolutionary
studies of plants, as well as highlighting some of the potential problems
associated with such use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study conducted to evaluate the effectiveness of four assistive technology (AT) tools on literacy: (1) speech synthesis, (2) spellchecker, (3) homophone tool, and (4) dictionary. All four of these programs are featured in TextHelp’s Read&Write Gold software package. A total of 93 secondary-level students with reading disabilities participated in the study. The participants completed a number of computer-based literacy tests after being assigned to a Read&Write group or a control group that utilized Microsoft Word. The results indicated that improvements in the following areas for the Read&Write group: (1) reading comprehension, (2) homophone error detection, (3) spelling error detection, and (4) word meanings. The Microsoft Word group also improved in the areas of word meanings and error detection, though performed worse on homophone error detection. The authors contend that these results indicate that speech synthesis, spell checkers, homophone tools, and dictionary programs have a positive effect on literacy among students with reading disabilities. This study was conducted by researchers at the Queen’s University in Belfast, Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.