6 resultados para Fluorescence properties
Resumo:
In this paper we demonstrate that the effect of aromatic C-F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di-(pentafluorophinoyl)}-P,P-dipentafluoro-phenylphosphinimidic acid (HF(20)tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X-H vibrations that quench lanthanide emission. The synthesis, full characterisation including X-ray and NMR analysis as well as the photophysical properties of the emissive complexes [Ln(F(20)tpip)(3)], in which Ln=Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Y, Gd, are reported. The photophysical results contrast previous studies, in which fluorination of alkyl chains tends to lead to more emissive lanthanide complexes for both visible and NIR emission. Analysis of the fluorescence properties of the HF(20)tpip and [Gd(F(20)tpip)(3)] reveals that there is a low-lying state at around 715 nm that is responsible for partially quenching of the signal of the visible emitting lanthanides and we attribute it to a pi-sigma* state. However, all visible emitting lanthanides have long lifetimes and unexpectedly the [Dy(F(20)tpip)(3)] complex shows a lifetime of 0.3 ms, indicating that the elimination of high-energy vibrations from the ligand framework is particularly favourable for Dy. The NIR emitting lanthanides show strong emission signals in powder and solution with unprecedented lifetimes. The luminescence lifetimes of [Nd(F(20)tpip)(3)], [Er(F(20)tpip)(3)] and [Yb(F(20)tpip)(3)] in deuteurated acetonitrile are 44, 741 and 1111 mu s. The highest value observed for the [Yb(F(20)tpip)(3)] complex is more than half the value of the Yb ion radiative lifetime.
Resumo:
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelin-signalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO-609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ∼17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe(267) is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the 'gatekeeper' amino acid Phe(267)Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinase-calmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in E. coli.
Resumo:
Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO.
Resumo:
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Resumo:
MCF, NbMCF and TaMCF Mesostructured Cellular Foams were used as supports for platinum and silver (1 wt%). Metallic and bimetallic catalysts were prepared by grafting of metal species on APTMS (3-aminopropyltrimethoxysilane) and MPTMS (2-mercaptopropyltrimethoxysilane) functionalized supports. Characterizations by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) spectroscopy, and in situ Fourier Transform Infrared (FTIR) spectroscopy allowed to monitor the oxidation state of metals and surface properties of the catalysts, in particular the formation of bimetallic phases and the strong metal–support interactions. It was evidenced that the functionalization agent (APTMS or MPTMS) influenced the metals dispersion, the type of bimetallic species and Nb/Ta interaction with Pt/Ag. Strong Nb–Ag interaction led to the reduction of niobium in the support and oxidation of silver. MPTMS interacted at first with Pt to form Pt–Ag ensembles highly active in CH3OH oxidation. The effect of Pt particle size and platinum–silver interaction on methanol oxidation was also considered. The nature of the functionalization agent strongly influenced the species formed on the surface during reaction with methanol and determined the catalytic activity and selectivity.
Resumo:
Rotomolded containers for solvents and hydrocarbons require the use of high-permeability resins such as polyamide (PA). The published studies with this material are very scarce. In this work, a commercial grade of PA11 was rotational-molded using different processing temperatures and characterized with a range of techniques. The study aims at investigating the influence of the processing conditions on the microstructure and properties of molded parts. The results showed that the spherulitic morphology and the mechanical properties are affected by the processing temperature, the optimum processing range being between 220°C and 240°C. Overheating causes a decrease of the impact strength and a severe increase in the formation of pinholes at the outer surface due to polymer degradation and formation of volatile products. The thermo-oxidation reactions occurring at the inner surface of the samples result in the formation of products that absorb in the UV and visible light regions and cause the microhardness and the melt viscosity of the material to increase. The extent and severity of the degradation at the inner surface may be easily assessed by fluorescence microscopy. © 2008 Wiley Periodicals, Inc.