85 resultados para Fluidizing velocity
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
Reduced arterial compliance precedes changes in blood pressure, which may be mediated through alterations in vessel wall matrix composition. We investigated the effect of the collagen type I-1 gene (COL1A1) +2046G>T polymorphism on arterial compliance in healthy individuals. We recruited 489 subjects (251 men and 238 women; mean age, 22.6±1.6 years). COL1A1 genotypes were determined using polymerase chain reaction and digestion by restriction enzyme Bal1. Arterial pulse wave velocities were measured in 3 segments, aortoiliac (PWVA), aortoradial (PWVB), and aorto-dorsalis-pedis (PWVF), as an index of compliance using a noninvasive optical method. Data were available for 455 subjects. The sample was in Hardy-Weinberg equilibrium with genotype distributions and allele frequencies that were not significantly different from those reported previously. The T allele frequency was 0.22 (95% confidence interval, 0.19 to 0.24). Two hundred eighty-three (62.2%) subjects were genotype GG, 148 (35.5%) subjects were genotype GT, and 24 (5.3%) subjects were genotype TT. A comparison of GG homozygotes with GT and TT individuals demonstrated a statistically significant association with arterial compliance: PWVF 4.92±0.03 versus 5.06±0.05 m/s (ANOVA, P=0.009), PWVB 4.20±0.03 versus 4.32±0.04 m/s (ANOVA, P=0.036), and PWVA 3.07±0.03 versus 3.15±0.03 m/s (ANOVA, P=0.045). The effects of genotype were independent of age, gender, smoking, mean arterial pressure, body mass index, family history of hypertension, and activity scores. We report an association between the COL1A1 gene polymorphism and arterial compliance. Alterations in arterial collagen type 1A deposition may play a role in the regulation of arterial compliance
Resumo:
We compare existing high spectral resolution (R = lambda/Deltalambda similar to 40 000) Ca II Kobservations (lambda(air) = 3933.66 Angstrom) towards 88 mainly B-type stars, and new observations taken using the Intermediate dispersion Spectrograph and Imaging System (ISIS) on the William Herschel Telescope at R similar to 10 000 towards three stars taken from the Palomar-Green Survey, with 21-cm HI emission-line profiles, in order to search for optical absorption towards known intermediate- and high-velocity cloud complexes. Given certain assumptions, limits to the gas phase abundance of Ca II are estimated for the cloud components. We use the data to derive the following distances from the Galactic plane (z). (i) Tentative lower z-height limits of 2800 and 4100 pc towards complex C using lack of absorption in the spectra of HD341617 and PG 0855 + 294, respectively. (ii) A weak lower z-height of 1400 pc towards complex WA-WB using lack of absorption in EC 09470-1433 and a weak lower limit of 2470 pc using lack of absorption in EC 09452-1403. (iii) An upper z- height of 2470 pc towards a southern intermediate- velocity cloud (IVC) with v(LSR) = -55 km s(-1) using PG 2351 + 198. (iv) Detection of a possible IVC in Ca II absorption at v(LSR) = +52 km s(-1) using EC 20104-2944. No associated HI in emission is detected. At this position, normal Galactic rotation predicts velocities of up to similar to+ 25 km s(-1). The detection puts an upper z-height of 1860 pc to the cloud. (v) Tentative HI and Ca II K detections towards an IVC at similar to+70 km s(-1) in the direction of high-velocity cloud (HVC) complex WE, sightline EC 06387-8045, indicating that the IVC may be at a z-height lower than 1770 pc. (vi) Detection of Ca II K absorption in the spectrum of PG 0855 + 294 in the direction of IV20, indicating that this IVC has a z-height smaller than 4100 pc. (vii) A weak lower z-height of 4300 pc towards a small HVC with v(LSR) = +115 km s(-1) at l, b = 200degrees, + 52degrees, using lack of absorption in the Ca II K spectrum of PG 0955 + 291.
Resumo:
We present intermediate-resolution HST/STIS spectra of a high- velocity interstellar cloud ((LSR)-L-upsilon = + 80 kms(-1)) towards DI1388, a young star in the Magellanic Bridge located between the Small and Large Magellanic Clouds. The STIS data have a signal-to-noise ratio (S/N) of 20-45 and a spectral resolution of about 6.5 km s(-1) (FWHM), The high-velocity cloud absorption is observed in the lines of C II, O I, Si II, Si III, Si IV and S III. Limits can be placed on the amount of S II and Fe II absorption that is present. An analysis of the relative abundances derived from the observed species, particularly C II and O I, suggests that this high-velocity gas is warm (T-k similar to 10(3)-10(4) K) and predominantly ionized, This hypothesis is supported by the presence of absorption produced by highly ionized species, such as Si IV, This sightline also intercepts two other high-velocity clouds that produce weak absorption features at (LSR)-L-upsilon = + 113 and + 130kms(-1) in the STIS spectra.
Resumo:
We present Westerbork Synthesis Radio Telescope HI images, Lovell telescope multibeam H I wide-field mapping, William Herschel Telescope long-slit echelle Ca II observations, Wisconsin Halpha Mapper (WHAM) facility images, and IRAS ISSA 60- and 100-mum co-added images towards the intermediate- velocity cloud (IVC) at + 70 km s(-1), located in the general direction of the M15 globular cluster. When combined with previously published Arecibo data, the H I gas in the IVC is found to be clumpy, with a peak H I column density of similar to1.5 x 10(20) cm(-2), inferred volume density (assuming spherical symmetry) of similar to24 cm(-3)/D (kpc) and a maximum brightness temperature at a resolution of 81 x 14 arcsec(2) of 14 K. The major axis of this part of the IVC lies approximately parallel to the Galactic plane, as does the low- velocity H I gas and IRAS emission. The H I gas in the cloud is warm, with a minimum value of the full width at half-maximum velocity width of 5 km s(-1) corresponding to a kinetic temperature, in the absence of turbulence, of similar to540 K. From the H I data, there are indications of two-component velocity structure. Similarly, the Ca II spectra, of resolution 7 km s(-1), also show tentative evidence of velocity structure, perhaps indicative of cloudlets. Assuming that there are no unresolved narrow-velocity components, the mean values of log(10)[N(Ca II K) cm(2)] similar to 12.0 and Ca II/H I similar to2 5 x 10(-8) are typical of observations of high Galactic latitude clouds. This compares with a value of Ca II/H I>10(-6) for IVC absorption towards HD 203664, a halo star of distance 3 kpc, some 3.degrees1 from the main M15 IVC condensation. The main IVC condensation is detected by WHAM in Halpha with central local-standard-of-rest velocities of similar to60-70 km s(-1), and intensities uncorrected for Galactic extinction of up to 1.3 R, indicating that the gas is partially ionized. The FWHM values of the Halpha IVC component, at a resolution of 1degrees, exceed 30 km s(-1). This is some 10 km s(-1) larger than the corresponding H I value at a similar resolution, and indicates that the two components may not be mixed. However, the spatial and velocity coincidence of the Halpha and H I peaks in emission towards the main IVC component is qualitatively good. If the Halpha emission is caused solely by photoionization, the Lyman continuum flux towards the main IVC condensation is similar to2.7 x 10(6) photon cm(-2) s(-1). There is not a corresponding IVC Halpha detection towards the halo star HD 203664 at velocities exceeding similar to60 km s(- 1). Finally, both the 60- and 100-mum IRAS images show spatial coincidence, over a 0.675 x 0 625 deg(2) field, with both low- and intermediate-velocity H I gas (previously observed with the Arecibo telescope), indicating that the IVC may contain dust. Both the Halpha and tentative IRAS detections discriminate this IVC from high-velocity clouds, although the H I properties do not. When combined with the H I and optical results, these data point to a Galactic origin for at least parts of this IVC.
Resumo:
We present echelle spectrograph observations in the Na D lines, at resolutions of 6.2-8.5 km s(-1), for 11 stars located in the line-of-sight to the M15 intermediate velocity cloud (IVC), which has a radial velocity of similar to +70 km s(-1) in the Local Standard of Rest. This cloud is a part of IVC Complex gp. The targets range in magnitude from m(V) = 13.3-14.8. Seven of the observed stars are in the M15 globular cluster, the remaining four being field stars. Three of the observed cluster stars are located near a peak in intensity of the IVC Hi column density as observed at a resolution of similar to 1 arcmin. Intermediate velocity gas is detected in absorption towards 7 stars, with equivalent widths in NaD2 ranging from similar to0.09-0.20 Angstrom, corresponding to log(10)(N-Na cm(-2)) similar to 11.8-12.5, and Na I/H I column density ratios (neglecting the HII component) ranging from similar to(1-3) x 10(-8). Over scales ranging from 30 arcsec to 1 arcmin, the Na i column density and the Na i/H i ratio varies by upto 70 per cent and a factor of similar to 2, respectively. Combining the current sightlines with previously obtained Nai data from Kennedy et al. (1998b), the Na i/H i column density ratio over cluster sightlines varies by upto a factor of similar to 25, when using Hi data of resolution similar to 2 x 1 arcmin. One cluster star, M15 ZNG-1, was also observed in the Ca i (lambda(air) = 4226.728 Angstrom) and Ca ii (lambda(air) = 3933.663 Angstrom) lines. A column density ratio N(Ca i)/N(Ca ii) <0.03 was found, typical of values seen in the warm ionised interstellar medium. Towards this sightline, the IVC has a Nai/Ca ii column density ratio of &SIM; 0.25, similar to that observed in the local interstellar medium. Finally, we detect tentative evidence for IV absorption in Ki (?(air) = 7698:974 &ANGS) towards 3 cluster stars, which have N(K i)/N(H i) ratios of &SIM;0.5-3 x 10(-9).
Resumo:
We present single-dish Arecibo 21-cm H i observations, covering a 0 degrees 675x0 degrees 625 RA-Dec. grid, of the intermediate-velocity cloud (IVC) centred upon the M15 globular cluster. The velocity and positional structure of the IVC gas at V-LSR=70 km s(-1) are investigated; it is found to be clumpy and has a peak surface density N(H i)similar to 8x10(19) cm(- 2). Additionally, we have performed a long H i integration towards HD 203664, a Galactic halo star some 3 degrees1 from M15, in which optical IVC absorption has previously been detected. No H i with a velocity exceeding 60 km s(-1) was found to a brightness temperature limit of 0.05 K. However, additional pointings did detect IVC gas approximately mid-way between HD 203664 and M15. Finally, we present both Arecibo H i pointings and low-resolution spectra in the Ca ii H and K lines towards 15 field stars in the general field towards M15, in an attempt to obtain the distance to the IVC. Intermediate- velocity H i is detected towards seven sightlines. Stellar spectral types are derived for 12 of the sample. Assuming that these stars lie on the main sequence, their distances are estimated to lie in the range 150 less than or equal tod less than or equal to 1350 pc. No Ca ii absorption is observed, either because the IVC is further away than similar to 1350 pc or more likely because the gas along these sightlines is of too low a density to be detected by the current observations.
Resumo:
We present wide-field neutral hydrogen (H I) Lovell telescope multibeam, and Dominion Radio Astrophysical Observatory Hi synthesis observations, of the high velocity cloud (HVC) located in the general direction of the globular cluster M92. This cloud is part of the larger Complex C and lies at velocities between similar to -80 and -130 km s(-1) in the Local Standard of Rest. The Lovell telescope observations, of resolution 12 arcmin spatially and 3.0 km s(-1) in velocity, fully sampling a 3.1 degrees x 12.6 degrees RA-Dec grid, have found that this part of HVC Complex C comprises two main condensations, lying approximately north-south in declination, separated by similar to2 degrees and being parallel to the Galactic plane. At this resolution, peak values of the brightness temperature and Hi column density of similar to1.4 K and similar to5 x 10(19) cm(-2) are determined, with relatively high values of the full width half maximum velocity (FWHM) of similar to 22 km s(-1) being observed, equivalent to a gas kinetic temperature, in the absence of turbulence and geometric effects of similar to 10 000 K. Each of these properties, as well as the sizes of the clouds, are similar in the two components. The DRAO observations, towards the Northern HVC condensation, are the first high-resolution Hi spectra of Complex C. When smoothed to a resolution of 3 arcmin, they identify several Hi intensity peaks with column densities in the range 4-7 x 10(19) cm(-2). Further smoothing of these data to 6 arcmin resolution tentatively indicates that parts of the HVC consist of two velocity components, of similar brightness temperature, separated by similar to7 km s(-1) in velocity, and with FWHM velocity widths of similar to5-7 km s(-1). No IRAS 60 or 100 micron flux is associated with the M92 HVC. Cloud properties are briefly discussed and compared to previous observations of HVCs.
Resumo:
We present Ca II K (lambda(air) = 3933.661 angstrom) interstellar observations towards 20 early-type stars, to place lower distance limits to intermediate- and high-velocity clouds (IHVCs) in their lines of sight. The spectra are also employed to estimate the Ca abundance in the low-velocity gas towards these objects, when combined with Leiden-Dwingeloo 21-cm HI survey data of spatial resolution 0 degrees.5. Nine of the stars, which lie towards IHVC complexes H, K and gp, were observed with the intermediate dispersion spectrograph on the Isaac Newton Telescope at a resolution R = lambda/Delta lambda of 9000 (similar to 33 km s(-1)) and signal-to-noise ratio (S/N) per pixel of 75-140. A further nine objects were observed with the Utrecht Echelle Spectrograph on the William Herschel Telescope at R = 40 000 (similar to 7.5 km s(-1)) and S/N per pixel of 10-25. Finally, two objects were observed in both Ca II K and Na I D lines using the 2D COUDE on the McDonald 2.7-m telescope at R = 35 000 (similar to 8.5 km s(-1)). The abundance of Ca II K {log(10)(A) = log(10)[N(Ca II K)]-log(10)[N(HI)]} plotted against HI column density for the objects in the current sample with heights above the Galactic plane (z) exceeding 1000 pc is found to obey the Wakker & Mathis (2000) relation. Also, the reduced column density of Ca II K as function of z is consistent with the larger sample taken from Smoker et al. (2003). Higher S/N observations than those previously taken towards HVC complex H stars HD 13256 and HILT 190 reinforce the assertion that this lies at a distance exceeding 4000 pc. No obvious absorption is detected in observations of ALS 10407 and HD 357657 towards IVC complex gp. The latter star has a spectroscopically estimated distance of similar to 2040 pc, although this was derived assuming the star lies on the main sequence and without any reddening correction being applied. Finally, no Ca II K absorption is detected towards two stars along the line of sight to complex K, namely PG 1610+529 and PG 1710+490. The latter is at a distance of similar to 700 pc, hence placing a lower distance limit to this complex, where previously only an upper distance limit of 6800 pc was available.
Resumo:
We report on our findings of the bright, pulsating, helium atmosphere white dwarf GD 358, based on time-resolved optical spectrophotometry. We identify 5 real pulsation modes and at least 6 combination modes at frequencies consistent with those found in previous observations. The measured Doppler shifts from our spectra show variations with amplitudes of up to 5.5 km s-1 at the frequencies inferred from the flux variations. We conclude that these are variations in the line-of-sight velocities associated with the pulsational motion. We use the observed flux and velocity amplitudes and phases to test theoretical predictions within the convective driving framework, and compare these with similar observations of the hydrogen atmosphere white dwarf pulsators (DAVs). The wavelength dependence of the fractional pulsation amplitudes (chromatic amplitudes) allows us to conclude that all five real modes share the same spherical degree, most likely, l=1. This is consistent with previous identifications based solely on photometry. We find that a high signal-to-noise mean spectrum on its own is not enough to determine the atmospheric parameters and that there are small but significant discrepancies between the observations and model atmospheres. The source of these remains to be identified. While we infer Teff =24 kK and log g ~ 8.0 from the mean spectrum, the chromatic amplitudes, which are a measure of the derivative of the flux with respect to the temperature, unambiguously favour a higher effective temperature, 27 kK, which is more in line with independent determinations from ultra-violet spectra.