3 resultados para Flaking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to predict the behavior of masonry materials is crucial to conserve building stone. Natural stone, such as sandstone, is not immune from the processes of weathering in the built environment and suffers from decay by granular disintegration, contour scaling, and multiple flaking. Spatial variation of rock properties is a major contributing factor to inconsistent responses to weathering. This has implications for moisture movement and salt input and output and storage, and results in unpredictability in the decay dynamics of masonry materials. This article explores the use of variography and kriging to investigate the spatial interactions between the trigger factors of stone decay, in particular, permeability and its effect on salt penetration. Sandstone blocks were used to represent fresh building stones from a weathering perspective and gave baseline characteristics for the interpretation of subsequent deterioration and decay pathways. Simulated weathering trials involved preloading a sandstone block with salt and subjecting a separate block to 20 cycles of a weathering trial designed to simulate a temperate weathering regime. Geostatistical analysis indicated differences in the spatial variation of permeability of the fresh rock and that subjected to the weathering regimes. Spatial prediction and visualization showed differences in the spatial continuity of permeability in a horizontal and vertical direction through the preloaded block after salt weathering. Continual wetting with salt and alternate heating increased permeability in a vertical direction, enabling the ingress and movement of salt and moisture more effectively through the stone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many previous studies into internal temperature gradients within stone have assumed smooth, exponential increases and decreases in sub-surface temperatures in response, for example, to diurnal patterns of heating and cooling and these have been used to explain phenomena such as large-scale contour scaling. This high-resolution experimental study, in which a porous limestone block was subjected to alternate surface heating and cooling using an infrared lamp, demonstrates that internal temperature gradients in response to short-term environmental cycles (measured in minutes) can in fact be complex and inconsistent. Results confirm the significance of very steep temperature/stress gradients within the outer 10 mm or less of exposed stone. Below this the data indicate complex patterns of temperature reversals, the amplitudes of which are attenuated with depth and which are influenced in their intensity and location by variations in the relative duration of heating and cooling phases. It is suggested that the reversals might represent ‘interference patterns’ between incoming and outgoing thermal waves, but whatever their origin they are potentially important because they occur within the zone in which many stone decay processes, especially salt weathering, operate. These processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example, trigger these fluctuations on numerous occasions over a day. In particular, the reversals occur at a scale that is commensurate with decay by multiple flaking and could indicate an underlying control on this previously little-researched pattern of weathering. In the context of this publication, however, the main lesson to be learned from this study is that differing scales of behaviour require different scales of enquiry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.