14 resultados para Fire resistance
Resumo:
Because of the different mix design in comparison with traditional concrete and the absence of vibration, different durability characteristics might be expected for self-compacting concrete. The stateof- the-art report, prepared by RILEM Technical Committee TC 205-DSC focuses on the Durability of SCC, by first gathering the available information concerning pore structure, air-void system and transport mechanisms. The available durability results are studied and summarised keeping in mind the fundamental mechanisms and driving forces. All relevant durability issues are considered, like carbonation, chloride penetration, frost resistance, ASR, sulphate attack, thaumasite formation, fire resistance, etc... It is not the intention to give a review on these durability aspects for concrete in general. The aim however is to point at the specifics related to the use of SCC, e.g. due to the addition of a large amount of limestone filler, etc... This paper summarizes the main conclusions of the State-of-the-Art Report.
Resumo:
ABSTRACT
One of the binder systems with low environmental footprint is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to industrial by-products such as ground granulated blast furnace slag (GGBS). Whilst they have the similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC do exhibit superior performance in terms of abrasion and acid resistance and fire protection.
In this article, the authors focus their attention on chloride ingress into different grades of AASC. The mix variables in AASC included water-to-binder, binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge is to get mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength according to each one. Then the chloride diffusion and migration in those mixes were measured and compared with same normal concretes in the existed literature based on chloride penetration depth. Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.
Resumo:
ABSTRACT: Researchers are focusing their attention on alternative binder systems using 100% supplementary cementitious materials as it allows better control over the microstructure formation and low to moderate environmental footprint. One such system being considered is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to ground granulated blast furnace slag (GGBS). Whilst they have a similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC are reported to exhibit superior performance in terms of abrasion,acid resistance and fire protection.
In this article, the authors investigate chloride ingress into different grades of AASC. The mix variables in AASC included water to binder, and binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge was to develop mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength. Further chloride ingress into those mixes were assessed and compared with the data from normal concretes based on literature. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.