34 resultados para Fine-grained


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Index properties such as the liquid limit and plastic limit are widely used to evaluate certain geotechnical parameters of fine-grained soils. Measurement of the liquid limit is a mechanical process, and the possibility of errors occurring during measurement is not significant. However, this is not the case for plastic limit testing, despite the fact that the current method of measurement is embraced by many standards around the world. The method in question relies on a fairly crude procedure known widely as the ‘thread rolling' test, though it has been the subject of much criticism in recent years. It is essential that a new, more reliable method of measuring the plastic limit is developed using a mechanical process that is both consistent and easily reproducible. The work reported in this paper concerns the development of a new device to measure the plastic limit, based on the existing falling cone apparatus. The force required for the test is equivalent to the application of a 54 N fast-static load acting on the existing cone used in liquid limit measurements. The test is complete when the relevant water content of the soil specimen allows the cone to achieve a penetration of 20 mm. The new technique was used to measure the plastic limit of 16 different clays from around the world. The plastic limit measured using the new method identified reasonably well the water content at which the soil phase changes from the plastic to the semi-solid state. Further evaluation was undertaken by conducting plastic limit tests using the new method on selected samples and comparing the results with values reported by local site investigation laboratories. Again, reasonable agreement was found.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The British standard constant-head triaxial test for measuring the permeability of fine-grained soils takes a relatively long time. A quicker test could provide savings to the construction industry, particularly for checking the quality of landfill clay liners. An accelerated permeability test has been developed, but the method often underestimates the permeability values compared owing to structural changes in the soil sample. This paper reports on an investigation
into the accelerated test to discover if the changes can be limited by using a revised procedure. The accelerated test is assessed and compared with the standard test and a ramp-accelerated permeability test. Four different finegrained materials are compacted at various water contents to produce analogous samples for testing using the three different methods. Fabric analysis is carried out on specimens derived from post-test samples using mercury intrusion porosimetry and scanning electron microscopy to assess the effects of testing on soil structure. The results show that accelerated testing in general underestimates permeability compared with values derived from the standard test, owing to changes in soil structure caused by testing. The ramp-accelerated test is shown to provide an improvement in terms of these structural changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995nm wavelength range, and designated 2008 TC3 (refs 4-6). It subsequently hit the Earth. Because it exploded at 37km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many genetic studies have demonstrated an association between the 7-repeat (7r) allele of a 48-base pair variable number of tandem repeats (VNTR) in exon 3 of the DRD4 gene and the phenotype of attention deficit hyperactivity disorder (ADHD). Previous studies have shown inconsistent associations between the 7r allele and neurocognitive performance in children with ADHD. We investigated the performance of 128 children with and without ADHD on the Fixed and Random versions of the Sustained Attention to Response Task (SART). We employed timeseries analyses of reaction-time data to allow a fine-grained analysis of reaction time variability, a candidate endophenotype for ADHD. Children were grouped into either the 7r-present group (possessing at least one copy of the 7r allele) or the 7r-absent group. The ADHD group made significantly more commission errors and was significantly more variable in RT in terms of fast moment-to-moment variability than the control group, but no effect of genotype was found on these measures. Children with ADHD without the 7r allele made significantly more omission errors, were significantly more variable in the slow frequency domain and showed less sensitivity to the signal (d') than those children with ADHD the 7r and control children with or without the 7r. These results highlight the utility of time-series analyses of reaction time data for delineating the neuropsychological deficits associated with ADHD and the DRD4 VNTR. Absence of the 7-repeat allele in children with ADHD is associated with a neurocognitive profile of drifting sustained attention that gives rise to variable and inconsistent performance. (c) 2008 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research reported here is based on the standard laboratory experiments routinely performed in order to measure various geotechnical parameters. These experiments require consolidation of fine-grained samples in triaxial or stress path apparatus. The time required for the consolidation is dependent on the permeability of the soil and the length of the drainage path. The consolidation time is often of the order of several weeks in large clay-dominated samples. Long testing periods can be problematic, as they can delay decisions on design and construction methods. Acceleration of the consolidation process would require a reduction in effective drainage length and this is usually achieved by placing filter drains around the sample. The purpose of the research reported in this paper is to assess if these filter drains work effectively and, if not, to determine what modifications to the filter drains are needed. The findings have shown that use of a double filter reduces the consolidation time several fold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sphere Decoding (SD) is a highly effective detection technique for Multiple-Input Multiple-Output (MIMO) wireless communications receivers, offering quasi-optimal accuracy with relatively low computational complexity as compared to the ideal ML detector. Despite this, the computational demands of even low-complexity SD variants, such as Fixed Complexity SD (FSD), remains such that implementation on modern software-defined network equipment is a highly challenging process, and indeed real-time solutions for MIMO systems such as 4 4 16-QAM 802.11n are unreported. This paper overcomes this barrier. By exploiting large-scale networks of fine-grained softwareprogrammable processors on Field Programmable Gate Array (FPGA), a series of unique SD implementations are presented, culminating in the only single-chip, real-time quasi-optimal SD for 44 16-QAM 802.11n MIMO. Furthermore, it demonstrates that the high performance software-defined architectures which enable these implementations exhibit cost comparable to dedicated circuit architectures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initial part of this paper reviews the early challenges (c 1980) in achieving real-time silicon implementations of DSP computations. In particular, it discusses research on application specific architectures, including bit level systolic circuits that led to important advances in achieving the DSP performance levels then required. These were many orders of magnitude greater than those achievable using programmable (including early DSP) processors, and were demonstrated through the design of commercial digital correlator and digital filter chips. As is discussed, an important challenge was the application of these concepts to recursive computations as occur, for example, in Infinite Impulse Response (IIR) filters. An important breakthrough was to show how fine grained pipelining can be used if arithmetic is performed most significant bit (msb) first. This can be achieved using redundant number systems, including carry-save arithmetic. This research and its practical benefits were again demonstrated through a number of novel IIR filter chip designs which at the time, exhibited performance much greater than previous solutions. The architectural insights gained coupled with the regular nature of many DSP and video processing computations also provided the foundation for new methods for the rapid design and synthesis of complex DSP System-on-Chip (SoC), Intellectual Property (IP) cores. This included the creation of a wide portfolio of commercial SoC video compression cores (MPEG2, MPEG4, H.264) for very high performance applications ranging from cell phones to High Definition TV (HDTV). The work provided the foundation for systematic methodologies, tools and design flows including high-level design optimizations based on "algorithmic engineering" and also led to the creation of the Abhainn tool environment for the design of complex heterogeneous DSP platforms comprising processors and multiple FPGAs. The paper concludes with a discussion of the problems faced by designers in developing complex DSP systems using current SoC technology. © 2007 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of efficient synchronization mechanisms is crucial for implementing fine grained parallel programs on modern shared cache multi-core architectures. In this paper we study this problem by considering Single-Producer/Single- Consumer (SPSC) coordination using unbounded queues. A novel unbounded SPSC algorithm capable of reducing the row synchronization latency and speeding up Producer-Consumer coordination is presented. The algorithm has been extensively tested on a shared-cache multi-core platform and a sketch proof of correctness is presented. The queues proposed have been used as basic building blocks to implement the FastFlow parallel framework, which has been demonstrated to offer very good performance for fine-grain parallel applications. © 2012 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Wurmian) at Unterangerberg at similar to 120-110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Wiirmian interstadial (MIS 5c) is preserved. During the second Early Wiirmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to similar to 70-60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between similar to 55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at similar to 45 ka and/or was truncated by ice during the Last Glacial Maximum. (C) 2013 Elsevier Ltd. All rights reserved.