2 resultados para Feature Classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring and tracking of IP traffic flows are essential for network services (i.e. packet forwarding). Packet header lookup is the main part of flow identification by determining the predefined matching action for each incoming flow. In this paper, an improved header lookup and flow rule update solution is investigated. A detailed study of several well-known lookup algorithms reveals that searching individual packet header field and combining the results achieve high lookup speed and flexibility. The proposed hybrid lookup architecture is comprised of various lookup algorithms, which are selected based on the user applications and system requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malware detection is a growing problem particularly on the Android mobile platform due to its increasing popularity and accessibility to numerous third party app markets. This has also been made worse by the increasingly sophisticated detection avoidance techniques employed by emerging malware families. This calls for more effective techniques for detection and classification of Android malware. Hence, in this paper we present an n-opcode analysis based approach that utilizes machine learning to classify and categorize Android malware. This approach enables automated feature discovery that eliminates the need for applying expert or domain knowledge to define the needed features. Our experiments on 2520 samples that were performed using up to 10-gram opcode features showed that an f-measure of 98% is achievable using this approach.