63 resultados para Fatigue Crack Nucleation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To increase structural efficiency of stiffened panels in an aircraft, it is plausible to introduce skin buckling containment features to increase the local skin stability and thus static strength performance. Introducing buckling containment features may also significantly influence the fatigue crack growth performance of the stiffened panel. This study focuses on the experimental demonstration of panel durability with skin bay buckling containment features. Through a series of fatigue crack growth tests on integrally machined aluminium alloy stiffened panels, the potential to simultaneously improve static strength performance and crack propagation behaviour is demonstrated. The introduction of prismatic buckling containment features which have yielded significant static strength performance gains have herein demonstrated potential fatigue life gains of up to + 63 per cent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With a new test facility, we have investigated fretting fatigue properties of Ti-1023 titanium alloy at different contact pressure. Both fatigue fracture and fretting scar were analyzed by scanning electron microscopy (SEM). Moreover, the depth of crack initiation area in fatigue fracture has been analyzed quantitatively, to investigate the relationship between the depth of crack initiation area and the fretting fatigue strength. The changing trends of the depth of crack initiation area and fretting fatigue strength with the increase of contact pressure show obvious opposite correlations. The depth of crack initiation area increases rapidly with the increase of contact pressure at low contact pressure (smaller than 10 MPa), and the fretting fatigue strength drops rapidly. At the contact pressure of 10–45 MPa, both the depth of crack initiation area and the fretting fatigue strength do not vary significantly. Contact pressure influences fatigue strength through influencing the initiation of fatigue crack. The main damage patterns are fatigue flake and plow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The introduction of skin sub-stiffening features has the potential to modify the local stability and fatigue crack growth performance of stiffened panels. Proposed herein is a method to enable initial static strength sizing of panels with such skin sub-stiffening features. The method uses bespoke skin buckling coefficients, automatically generated by Finite Element analysis and thus limits the modification to the conventional aerospace panel initial sizing process. The approach is demonstrated herein and validated for prismatic sub-stiffening features. Moreover, examination of the generated buckling coefficient data illustrates the influence of skin sub-stiffening on buckling behavior, with static strength increases typically corresponding to a reduction in the number of initial skin longitudinal buckle half-waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue response of an epoxy matrix containing vasculature for the delivery of liquid healing agents is investigated. The release of a rapidly curing, two-part epoxy healing chemistry into the wake of a propagating crack reduces the rate of crack extension by shielding the crack tip from the full range of applied stress intensity factor. Crack propagation is studied for a variety of loading conditions, with the maximum applied stress intensity factor ranging from 62 to 84% of the quasi-static fracture toughness of the material. At the highest level of applied load, the rate of mechanical damage is so fast that the healing agents do not fully mix and polymerize, and the effect of healing is minimal. The self-healing response is most effective at impeding the slower propagating cracks, with complete crack arrest occurring at the lowest level of applied load, and reductions of 79–84% in the rate of crack extension at intermediate loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental static and fatigue tension-tension tests were carried out on 5HS/RTM6 composite intact coupons and coupons incorporating adhesively-bonded (FM300-2) stepped flush joints. The results show that the adhesive joint, which is widely used in repairs, significantly reduces the static strength as well as the fatigue life of the composite. Both, the static and the fatigue failure of the ‘repaired’ coupons occur at the adhesive joint and involve crack initiation and propagation. The latter is modelled using interface finite elements based on the decohezive zone approach. The material degradation in the interface constitutive law is described by a damage variable, which can evolve due to the applied loads as well as the number of fatigue cycles. The fatigue formulation, based on a published model, is adapted to fit the framework of the pseudotransient formulation that is used as a numerical tool to overcome convergence difficulties. The fatigue model requires three material parameters. Numerical tests show that a single set of these parameters can be used to recover, very accurately, the experimental S-N relationship. Sensitivity studies show that the results are not mesh dependent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NiTi wires and their weldments are commonly used in micro-electro-mechanical systems (MEMS), and in such applications, cyclic loading are commonly encountered. In this paper, the bending-rotation fatigue (BRF) test was used to study the bending fatigue behavior of NiTi wire laser weldment in the small-strain regime. The fracture mechanism, which includes crack initiation, crack growth and propagation of the weldment in the BRF test, was investigated with the aid of SEM fractography and discussed in terms of the microstructure. It was found that crack initiation was primarily surface-condition dependent. The cracks were found to initiate at the surface defects at the weld zone (WZ) surface, and the crack propagation was assisted by the gas inclusions in the WZ. The weldment was finally fractured in a ductile manner. The fatigue life was found to decrease with increasing surface strain and also with increasing bending frequency (controlled by the rotational speed in the BRF test). In comparison, the fatigue life of the unwelded NiTi wires was higher than their welded counterparts at all strain levels and bending frequencies. The decrease in fatigue resistance of the weldment could be attributed to the surface and microstructural defects introduced during laser welding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plain fatigue and fretting fatigue tests of Ti-1023 titanium alloy were performed using a high-frequency push-pull fatigue testing machine. Both σmax versus number of cycles to failure curves were obtained for comparative analysis of the fretting effect on fatigue performance of the titanium alloy. Meanwhile, by analyzing the fracture of plain fatigue and fretting fatigue, the fretting scar and the fretting debris observed by scanning electron microscopy (SEM), the mechanism of fretting fatigue failure of Ti-1023 titanium alloy is discussed. The fretting fatigue strength of Ti-1023 titanium alloy is 175 MPa under 10 MPa contact pressure, which is 21% of plain fatigue strength (836 MPa). Under fretting condition, the Ti-1023 titanium alloy fatigue fracture failure occurs in a shorter fatigue life. When it comes to σmax versus number of cycles to failure curves, data points in the range of 106–107 cycles under plain fatigue condition moved to the range of 105–106 under fretting fatigue condition. The integrity of the fatigue specimen surface was seriously damaged under the effect of fretting. With the alternating stress loaded on specimen, the stress concentrated on the surface of fretting area, which brought earlier the initiation and propagation of crack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the requirements for the damage tolerance and fatigue life of commercial aircraft components, the high cycle fatigue (HCF) properties of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy forgings are important. The effects of microstructure types of the α+β titanium alloy on fatigue properties need to be understood. In this paper, by analysing the fracture surfaces of the titanium alloy having four types of microstructure, the effects of microstructure are investigated. The differences of initiation areas and crack propagation among different microstructures were studied. It was found that the area of the initiation region decreases in the order of coarse basketweave, fine basketweave, Widmanstätten, and bimodal microstructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.

Relevância:

20.00% 20.00%

Publicador: