8 resultados para Fascioliasis
Resumo:
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.
Resumo:
F. hepatica infections were established in rats and immune responses were monitored during primary and challenge infections. Antibody levels peaked at 3 weeks post-primary infection and at 6 days post-challenge infection. No significant correlation was found between antibody titre and number of flukes recovered at autopsy. Immunoblotting revealed a limited number of immunogenic polypeptides. When antibodies from these reactive bands were eluted and tested by IFA they all gave identical binding patterns: on juvenile fluke sections tegumental syncytium, tegumental cells and gut cells were labelled, while on adult sections the same antibodies labelled gut cells, reproductive tissue, excretory ducts and flame cells. This suggested that these tissues shared a common epitope or range of epitopes. A pronounced eosinophilia was observed throughout the infection period studied and infected liver sections showed massive cellular infiltration. Histochemical and immunocytochemical investigation of infected liver revealed the presence of large numbers of eosinophils, neutrophils, lymphocytes and phagocytes. The implications of these findings, to an understanding of concomitant immunity in the rat are discussed.
Resumo:
A monoclonal antibody specific for the T1 tegumental antigen of Fasciola hepatica was used as a solid-phase immunosorbent for the purification of T1 antigen from homogenised mature F hepatica. Material fractionated by this technique was successfully used in enzyme-linked immunoassays to detect antibodies to F hepatica in sera from sheep and cattle. Species differences in response to infection by F hepatica were demonstrated.
Resumo:
Despite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.
Resumo:
Triclabendazole (TCBZ), the anthelmintic drug active against both mature and immature liver flukes, was used to investigate the effect of in vivo treatment on the tegumental surface of juvenile Fasciola gigantica. Five goats were infected with 150 F. gigantica metacercariae each by oral gavage. Four of them were treated with single dose of TCBZ at 10mg/kg at four weeks post-infection. They were euthanized at 0 (untreated), 24, 48, 72 and 96h post treatment. Juvenile flukes were manually retrieved from the goat livers and processed for scanning electron microscopy. In control flukes, the anterior region was adorned with sharply pointed spines projecting away from the surface, while in the posterior region, spines become shorter and narrower, loosing serration and with the appearance of distinct furrows and papillae. The dorsal surface retained the same pattern of surface architecture similar to that of ventral surface. Flukes obtained from 24h post-treatment did not show any apparent change and were still very active. However, there were limited movements and some blebbing, swelling, deposition of tegumental secretions and some flattening displayed by the flukes of 48h post-treatment. All the worms were found dead 72h post-treatment and showed advanced level of tegumental disruptions, consisting of severe distortion of spines, sloughing off the tegument to expose the basal lamina, formation of pores and isolated patches of lesions. By 96h post-treatment, the disruption was extremely severe and the tegument was completely sheared off causing deeper lesions that exposed the underlying musculature. The disruption was more severe at posterior than anterior region and on ventral than dorsal surface. The present study further establishes the time-course of TCBZ action in vivo with 100% efficacy against the juvenile tropical liver fluke.
Resumo:
The cause of zoonotic schistosomiasis in the Philippines is Schistosoma japonicum, which infects up to 46 mammalian hosts, including humans and bovines. In China, water buffaloes have been identified as major reservoir hosts for schistosomiasis japonica, contributing up to 75% of human transmission. In the Philippines, water buffaloes (carabao; Bubalus bubalis carabanesis) have, historically, been considered unimportant reservoirs. We therefore revisited the possible role of bovines in schistosome transmission in the Philippines, using the recently described formalin-ethyl acetate sedimentation (FEA-SD) technique and a qPCR assay to examine fecal samples from 153 bovines (both carabao and cattle) from six barangays in Northern Samar. A high prevalence of S. japonicum was found using qPCR and FEA-SD in both cattle (87.50% and 77.08%, respectively) and carabao (80.00% and 55.24%, respectively). The average daily egg output for each bovine was calculated at 195,000. High prevalence and infection intensity of F. gigantica was also found in the bovines by qPCR and FEA-SD (95.33% and 96.00%, respectively). The identification of bovines as major reservoir hosts for S. japonicum transmission suggests that bovine treatment and/or vaccination, as one becomes available, should be included in any future control program that aims to reduce the disease burden due to schistosomiasis in the Philippines.
Resumo:
Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving 'molecular toolbox' for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the "neoblast" stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke.