103 resultados para Facial perception
Resumo:
Objective: To test the hypothesis that the self-perception of dental and facial attractiveness among patients requiring orthognathic surgery is no different from that of control patients.
Materials and Methods: Happiness with dental and facial appearance was assessed using questionnaires completed by 162 patients who required orthognathic treatment and 157 control subjects. Visual analog scale, binary, and open response data were collected. Analysis was carried out using a general linear model, logistic regression, and chi-square tests.
Results: Orthognathic patients were less happy with their dental appearance than were controls. Class II patients and women had lower happiness scores for their dental appearance. Among orthognathic patients, the "shape" and "prominence" of their teeth were the most frequent causes of concern. Older subjects, women, and orthognathic patients were less happy with their facial appearance. Class III orthognathic patients, older subjects, and women were more likely to have looked at their own face in profile. A greater proportion of Class II subjects than Class III subjects wished to change their appearance.
Conclusions: The hypothesis is rejected. The findings indicate that women and patients requiring orthognathic surgery had lower levels of happiness with their dentofacial appearance. Although Class II patients exhibited the lowest levels of happiness with their dental appearance, there was some evidence that concerns and awareness about their facial profile were more pronounced among the Class III patients.
Resumo:
Background This study aims to examine the relationship between how individuals with intellectual disabilities report their own levels of anger, and the ability of those individuals to recognize emotions. It was hypothesized that increased expression of anger would be linked to lower ability to recognize facial emotional expressions and increased tendency to interpret facial expressions in a hostile or negative manner. It was also hypothesized increased levels of anger may lead to the altered perception of a particular emotion.
Method A cross-sectional survey design was used. Thirty participants completed a test of facial emotion recognition (FER), and a self-report anger inventory (Benson & Ivins 1992) as part of a structured interview.
Results Individuals with higher self-reported anger did not show significantly reduced performance in FER, or interpret facial expressions in a more hostile manner compared with individuals with less self-reported anger. However, they were less accurate in recognizing neutral facial emotions.
Conclusions It is tentatively suggested that individuals with high levels of anger may be likely to perceive emotional content in a neutral facial expression because of their high levels of emotional arousal.
Resumo:
This article addresses gender differences in laughter and smiling from an evolutionary perspective. Laughter and smiling can be responses to successful display behavior or signals of affiliation amongst conversational partners—differing social and evolutionary agendas mean there are different motivations when interpreting these signals. Two experiments assess perceptions of genuine
and simulated male and female laughter and amusement social signals. Results show male simulation can always be distinguished. Female simulation is more complicated as males seem to distinguish cues of simulation yet judge simulated signals to be genuine. Females judge other female’s genuine signals to have higher levels of simulation. Results highlight the importance of laughter and smiling in human interactions, use of dynamic stimuli, and using multiple methodologies to assess perception.
Resumo:
Despite its importance in social interactions, laughter remains little studied in affective computing. Intelligent virtual agents are often blind to users’ laughter and unable to produce convincing laughter themselves. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received less attention. The aim of this study is threefold. First, to probe human laughter perception by analyzing patterns of categorisations of natural laughter animated on a minimal avatar. Results reveal that a low dimensional space can describe perception of laughter “types”. Second, to investigate observers’ perception of laughter (hilarious, social, awkward, fake, and non-laughter) based on animated avatars generated from natural and acted motion-capture data. Significant differences in torso and limb movements are found between animations perceived as laughter and those perceived as non-laughter. Hilarious laughter also differs from social laughter. Different body movement features were indicative of laughter in sitting and standing avatar postures. Third, to investigate automatic recognition of laughter to the same level of certainty as observers’ perceptions. Results show recognition rates of the Random Forest model approach human rating levels. Classification comparisons and feature importance analyses indicate an improvement in recognition of social laughter when localized features and nonlinear models are used.
Resumo:
During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.
Resumo:
We investigated whether infants from 8 ^ 22 weeks of age were sensitive to the illusory contour created by aligned line terminators. Previous reports of illusory-contour detection in infants under 4 months old could be due to infants' preference for the presence of terminators rather than their configuration. We generated preferential-looking stimuli containing sinusoidal lines whose oscillating, abutting terminators give a strong illusory contour in adult perception. Our experiments demonstrated a preference in infants 8 weeks old and above for an oscillating illusory contour compared with a stimulus containing equal terminator density and movement. Control experiments excluded local line density, or attention to alignment in general, as the basis for this result. In the youngest age group (8 ^ 10 weeks) stimulus velocity appears to be critical in determining the visibility of illusory contours, which is consistent with other data on motion processing at this age. We conclude that, by 2 months of age, the infant's visual system contains the nonlinear mechanisms necessary to extract an illusory contour from aligned terminators.