6 resultados para FREE POISSON ALGEBRAS
Resumo:
We prove an analogue of Magnus theorem for associative algebras without unity over arbitrary fields. Namely, if an algebra is given by $n+k$ generators and $k$ relations and has an $n$-element system of generators, then this algebra is a free algebra of rank $n$.
Resumo:
We consider the class of crossed products of noetherian domains with universal enveloping algebras of Lie algebras. For algebras from this class we give a sufficient condition for the existence of projective non-free modules. This class includes Weyl algebras and universal envelopings of Lie algebras, for which this question, known as noncommutative Serre's problem, was extensively studied before. It turns out that the method of lifting of non-trivial stably free modules from simple Ore extensions can be applied to crossed products after an appropriate choice of filtration. The motivating examples of crossed products are provided by the class of RIT algebras, originating in non-equilibrium physics.
Resumo:
The reduced Whitehead group $\SK$ of a graded division algebra graded by a torsion-free abelian group is studied. It is observed that the computations here are much more straightforward than in the non-graded setting. Bridges to the ungraded case are then established by the following two theorems: It is proved that $\SK$ of a tame valued division algebra over a henselian field coincides with $\SK$ of its associated graded division algebra. Furthermore, it is shown that $\SK$ of a graded division algebra is isomorphic to $\SK$ of its quotient division algebra. The first theorem gives the established formulas for the reduced Whitehead group of certain valued division algebras in a unified manner, whereas the latter theorem covers the stability of reduced Whitehead groups, and also describes $\SK$ for generic abelian crossed products.
Resumo:
The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.
Resumo:
Let X be a connected, noetherian scheme and A{script} be a sheaf of Azumaya algebras on X, which is a locally free O{script}-module of rank a. We show that the kernel and cokernel of K(X) ? K(A{script}) are torsion groups with exponent a for some m and any i = 0, when X is regular or X is of dimension d with an ample sheaf (in this case m = d + 1). As a consequence, K(X, Z/m) ? K(A{script}, Z/m), for any m relatively prime to a. © 2013 Copyright Taylor and Francis Group, LLC.