83 resultados para FORMIC ACID FUEL CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom modified THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO2 production in the low potential range. As the CO oxidation behaviour of the catalyst is not changed by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of multiple proton transfer (PT) reactions in solution is addressed by performing molecular dynamics simulations for a formic acid dimer embedded in a water cluster. The reactant species is treated quantum mechanically, within a density functional approach, while the solvent is represented by a classical model. By constraining different distances within the dimer we analyze the PT process in a variety of situations representative of more complex environments. Free energy profiles are presented, and analyzed in terms of typical solvated configurations extracted from the simulations. A decrease in the PT barrier height upon solvation is rationalized in terms of a transition state which is more polarized than the stable states. The dynamics of the double PT process is studied in a low-barrier case and correlated with solvent polarization fluctuations. Cooperative effects in the motion of the two protons are observed in two different situations: when the solvent polarization does not favor the transfer of one of the two protons and when the motion of the two protons is not synchronized. This body of observations is correlated with local structural and dynamical properties of the solvent in the vicinity of the reactant. (C) 2000 American Institute of Physics. [S0021-9606(00)51121-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from ~1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 × 10-7 (T/300)^-0.78 cm3 s-1 for electron temperatures, T, ranging from ~10 to ~1000 K. The branching fractions of the reaction have been studied at ~2 meV relative kinetic energy. It has been found that ~87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PtRuO/Ti anodes with a varying Pt:Ru ratio were prepared by thermal deposition of a PtRuO catalyst layer onto a Ti mesh for the direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX, and XRD. The catalyst coating layers became porous with increase of the Ru content, and showed oxide and alloy characteristics. The relative activities of the PtRuO/Ti electrodes were assessed and compared using half-cell tests and single DMFC experiments. The results showed that these electrodes were very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 38% for a DMFC operating at 20-60 °C. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel anode structure based on Ti mesh for the direct methanol fuel cell (DMFC) has been prepared by thermal deposition of ~5 µm PtRuO2 catalyst layer on ~50 µm Ti mesh. The preparation procedures and the main characteristics of the anode were studied by half-cell testing, scanning electron microscopy analysis, energy-dispersive X-ray measurement, and single-cell testing. The optimum calcination temperature is 450°C, calcination time is 90- 120 min, PtRuO2 catalyst loading is 5.0 mg cm-2, Pt precursor concentration range of solution is 0.14- 0.4 M, and solution aging time is 1 day. The performances of the anodes prepared using the solution kept within 20 days showed no significant difference. When it was used in DMFC feed with low-concentration methanol solution at 90°C, this new anode shows better performance than that of the conventional anode, because its thin hydrophilic structure is a benefit to the transport of methanol and carbon dioxide. However, due to its opening structure, when higher concentration methanol was employed, the performance of the cell with new anode became worse. © 2006 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electro-oxidations of methanol and formic acid at a Ru(0001) electrode in perchloric acid solution have been investigated as functions of temperature, potential and time using in-situ FTIR spectroscopy, and the results compared to those obtained during our previous studies on the adsorption and electro-oxidation of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at the Ru(0001) at potentials 1000 mV, the oxidation of formic acid to CO was significantly increased, and the oxidation of methanol to CO and methyl formate was observed, both of which were attributed to the formation of an active RuO phase on the Ru(0001) surface.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.