41 resultados para FLUCTUATION
Resumo:
We report the experimental reconstruction of the nonequilibrium work probability distribution in a closed quantum system, and the study of the corresponding quantum fluctuation relations. The experiment uses a liquid-state nuclear magnetic resonance platform that offers full control on the preparation and dynamics of the system. Our endeavors enable the characterization of the out-of-equilibrium dynamics of a quantum spin from a finite-time thermodynamics viewpoint.
Resumo:
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the engine and drivetrain models developed previously by Callahan, et al. (1) to examine a variety of engines. The predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The single-cylinder, high performance four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation in the model. Measured speed fluctuations from a firing Yamaha YZ426 engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar changes in performance. The multiple-cylinder, high performance two-stroke engine also showed significant changes in performance depending on the firing configuration. With both engines, the change in performance diminished with increasing mean engine speed. The low output, single-cylinder two-stroke engine simulation showed only a negligible change in performance, even with high amplitude speed fluctuations. Because the torque versus engine speed characteristic for the engine was so flat, this was expected. The cross-charged, multi-cylinder two-stroke engine also showed only a negligible change in performance. In this case, the combination of a relatively high inertia rotating assembly and the multiple cylinder firing events within the revolution smoothing the torque pulsations reduced the speed fluctuation amplitude itself.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the methods developed previously by Callahan, et al. (1) to examine a variety of two-stroke engines and one four-stroke engine. The two-stroke engines were: a high performance single-cylinder, a low performance single-cylinder, a high performance multi-cylinder, and a medium performance multi-cylinder. The four-stroke engine was a high performance single-cylinder unit. Each engine was modeled in Virtual Engines, which is a fully detailed one-dimensional thermodynamic engine simulator. Measured or predicted in-cycle speed data were input into the engine models. Predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The simulations for the high performance single-cylinder two-stroke engine predicted significant in-cycle crankshaft speed fluctuation amplitudes and significant changes in performance when the fluctuations were input into the engine model. This was validated experimentally on a firing test engine based on a Yamaha YZ250. The four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation assumed in the model. Measured speed fluctuations from a firing Yamaha YZ400F engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar fluctuation profiles and changes in performance. It is shown that the gear reduction between the crankshaft and clutch allowed for this similar behavior. The multi-cylinder, high performance two-stroke engine also showed significant changes in performance, in this case depending on the firing configuration. The low output two-stroke engine simulation showed only a negligible change in performance in spite of high amplitude speed fluctuations. This was due to its flat torque versus speed characteristic. The medium performance multi-cylinder two-stroke engine also showed only a negligible change in performance, in this case due to a relatively high inertia rotating assembly and multiple cylinder firing events within the revolution. These smoothed the net torque pulsations and reduced the amplitude of the speed fluctuation itself.
Resumo:
Two-color above threshold ionization of helium and xenon has been used to analyze the synchronization between individual pulses of the femtosecond extreme ultraviolet (XUV) free electron laser in Hamburg and an independent intense 120 fs mode-locked Ti:sapphire laser. Characteristic sidebands appear in the photoelectron spectra when the two pulses overlap spatially and temporally. The cross-correlation curve points to a 250 fs rms jitter between the two sources at the experiment. A more precise determination of the temporal fluctuation between the XUV and infrared pulses is obtained through the analysis of the single-shot sideband intensities. ©2007 American Institute of Physics
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.
Resumo:
The microstructure evolution of a 10Cr ferritic/martensitic heat-resistant steel during creep at 600°C was investigated in this work. Creep tests demonstrated that the 10Cr steel had higher creep strength than conventional ASME-P92 steel at 600°C. The microstructure after creep was studied by transmission electron microscopy, scanning electron microscopy and electron probe microanalysis. It was revealed that the martensitic laths were coarsened with time and eventually developed into subgrains after 8354 h. Laves phase was observed to grow and cluster along the prior austenite grain boundaries during creep and caused the fluctuation of solution and precipitation strengthening effects, which was responsible for the two slope changes on the creep rupture strength vs rupture time curve. It was also revealed that the microstructure evolution could be accelerated by stress, which resulted in the lower hardness in the deformed part of the creep specimen, compared with the aging part.
Resumo:
The temporal fluctuation of the average slope of a ricepile model is investigated. It is found that the power spectrum S(f) scales as 1/f(alpha) with alpha approximate to 1.3 when grains of rice are added only to one end of the pile. If grains are randomly added to the pile, the power spectrum exhibits 1/f(2) behavior. The profile fluctuations of the pile under different driving mechanisms are also discussed.
Resumo:
A 1983-1985 theory by Mitchell and Power predicts that, when rotating rectangles undergo certain kinds of speed fluctuation, they should appear to reverse just as trapezia do. The prediction is partially confirmed. One of two 'mimic' rectangles underwent apparent reversals more often than a control rectangle undergoing even rotation and in the same places as rotating trapezia. However, its reversal frequency was less than those of the trapezia, and a second 'mimic' showed an inappropriate distribution of reversals round the cycle. These anomalies call for some modification to Mitchell and Power's theory, but minor qualifications may be sufficient.
Resumo:
The mean velocity and turbulence intensity are the two main inputs to investigate the ship propeller induced seabed scouring resulting from a vessel is manoeuvring within a port where the underkeel clearances are low. More accurate data including the turbulence intensity is now available by using the laser doppler anemometry (LDA) measurement system and computational fluid dynamics (CFD) approach. Turbulence intensity has a loose definition, which is the velocity fluctuation as the root mean square (RMS) referenced to a mean flow velocity. However, the velocity fluctuation and mean velocity can be the overall value includingx, y and z directions or the value of a single component. LDA and CFD results were obtained from two different acquisition systems (Dantec LDA system and Fluent CFD package) and therefore the outputs cannot be compared directly. An effective method is proposed for comparing the turbulence intensity between the experimental measurements and the computational predictions within a ship propeller jet. The flow patterns of turbulence intensity within a ship propeller jet are presented by using the LDA measurements and CFD results from turbulence models of standard k-e, RNG k-e, realizable k–e, standard k–?, SST k–?and Reynolds stresses.
Resumo:
When a collection of phenotypically diverse organisms compete with each other for limited resources, the population can evolve into tightly localised clusters. Past studies have neglected the effects of demographic noise and studied the population on a macroscopic scale, where cluster formation is found to depend on the shape of the curve describing the decline of competition strength with phenotypic distance. Here we show how including the effects of demographic noise leads to a radically different conclusion. Two situations are identified: a weak-noise regime in which the population exhibits patterns of fluctuation around the macroscopic description, and a strong-noise regime where clusters appear spontaneously even in the case that all organisms have equal fitness. editor's choice Copyright (C) EPLA, 2012
Resumo:
The Large Fish Indicator (LFI) is a size-based indicator of fish community state. The indicator describes the proportion by biomass of a fish community represented by fish larger than some size threshold. From an observed peak value of 0.49 in 1990, the Celtic Sea LFI declined until about 2000 and then fluctuated around 0.10 throughout the 2000s. This decline in the LFI reflected a period of diminishing ‘large’ fish biomass, probably related to high levels of size selective fishing. During the study period, fishing mortality was maintained at consistently high values. Average biomass of ‘small’ fish fluctuated across the whole time series, showing a weak positive trend in recent years. Inter-annual variation in the LFI was increasingly driven by fluctuation in small fish biomass as large fish biomass declined. Simulations using a size-based ecosystem model suggested that recovery in Celtic Sea fish community size-structure (LFI) could demand at least 20% reductions in fishing pressure and occur on decadal timescales.
Resumo:
The performance of a louver-cooling scheme on a flat plate was analyzed using a detached-eddy-simulation turbulence model. It was assumed that the louver-cooling scheme was tested in a wind tunnel with the mainstream flow velocity of 20 m/s, equivalent to a Reynolds number of 16,200, based on the jet diameter. Turbulence closure was achieved by a realizable k-e-based detached-eddy-simulation turbulence model. Solutions of two blowing ratios of 0.5 and 1 were successfully obtained by running parallel on 16 nodes on a computer cluster. The flowfields were found to be highly unsteady and oscillatory in nature, with the maximum fluctuation of the adiabatic effectiveness as high as 15% of the time-averaged value. It is shown that the fluctuations in the adiabatic effectiveness are mainly caused by the spanwise fluctuation of the coolant jet and the unsteady vortical structures created by the interaction of the jet and the mainstream.
Resumo:
One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.
Resumo:
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by the instantaneous switching of the transverse field.