134 resultados para FEC using Reed-Solomon-like codes
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.
Resumo:
In this work we report both the calculation of atomic collision data for the electron-impact excitation of Ni II using parallel R-matrix codes and the computation of atomic transition data using the general atomic structure package CIV3.
Resumo:
In a recent paper, Verma et al. [Eur. Phys. J. D 42, 235 (2007)] have reported results for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 17 levels of the (1s(2)2s(2)2p(6))3s(2)3p(6), 3s(2)3p(5)3d and 3s3p(6)3d configurations of Ni XI. They adopted the CIV3 and R-matrix codes for the generation of wavefunctions and the scattering process, respectively. In this paper, through two independent calculations performed with the fully relativistic DARC (along with GRASP) and FAC codes, we demonstrate that their results are unreliable. New data are presented and their accuracy is assessed.
Resumo:
Photoionization cross-sections are obtained using the relativistic DiracAtomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the targetwavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.
Resumo:
Here we present the photoionization cross sections for the ground and metastable states of Cl-like Argon by exploiting the fully relativistic Breit-Pauli R-matrix computer codes to determine these transitions of interest. We compare our work with previous theoretical and experimental results and present a detailed investigation into the model of Ar III, the resonant structure and identification process.
Resumo:
Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (IS2 2s(2) 2P(6)) 3l(2) , 3l3l', and 3l4l configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interact ion (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate Cl for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (MI), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In a recent paper [Pramana - J. Phys. 64, 129 (2005)] results have been presented for electron impact excitation collision strengths for transitions among the fine-structure levels of the 2s(2)2p(6) and 2s(2)2p(5)3s configurations of Ni XIX. In this paper we demonstrate through an independent calculation with the relativistic R-matrix code that those results are unreliable and the conclusions drawn are invalid.
Resumo:
Recent progress using the VULCAN laser at the Rutherford Appleton Laboratory to pump X-ray lasing in nickel-like ions is reviewed. Double pulse pumping with similar to 100 ps pulses has been shown to produce significantly greater X-ray laser output than single pulses of duration 0.1-1 ns. With double pulse pumping, the main pumping pulse interacts with a pre-formed plasma created by a pre-pulse. The efficiency of lasing increases as there is a reduced effect of refraction of the X-ray laser beam due to smaller density gradients and larger gain volumes, which enable propagation of the X-ray laser beam along the full length of the target. The record shortest wavelength saturated laser at 5.9 nm has been achieved in Ni-like dysprosium using double pulse pumping of 75 ps duration from the VULCAN laser. A variant of the double pulse pumping using a single similar to 100 ps laser pulse and a superimposed short similar to 1 ps pulse has been found to further increase the efficiency of lasing by reducing the effects of over-ionisation during the gain period. The record shortest wavelength saturated laser pumped by a short similar to 1 ps pulse has been achieved in Ni-like samarium using the VULCAN laser operating in chirped pulse amplified (CPA) mode. Ni-like samarium lases at 7.3 nm. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
Resumo:
We report a study of the effect of prepulses on XUV lasing of Ne-like germanium for an irradiation geometry where approximate to 20 mm long germanium slab targets were irradiated at approximate to 1.6 x 10(13) W cm(-2) using approximate to 0.7 ns (1.06 mu m) pulses from the VULCAN glass laser. Prepulses were generated at fractional power levels of approximate to 2 x 10(-4) (low) and approximate to 2 x 10(-2) (high) and arrived on target 5 and 3.2 ns respectively in advance of the main heating pulse, For both the low and high prepulses the output of the 3p-3s, J = 0-1, line at 19.6 nm was enhanced such that the peak radiant density (J/st) for this line became greater than that for the normally stronger J = 2-1 lines at 23.2 and 23.6 nm. The J = 0-1 line, whose FWHM duration was reduced from approximate to 450 ps to approximate to 100 ps, delivered approximate to 6 x more power (W) than the average for the combined J = 2-1 lines, whose FWHM duration was approximate to 500 ps for both levels of prepulse, The higher prepulse was more effective, yielding approximate to 2 x more radiant density and approximate to 7 x more power on both the J = 0-1 and J = 2-1 transitions compared to the low prepulse case, The most dramatic observation overall was the approximate to 40 x increase of power in the J = 0-1 line for the high prepulse (approximate to 2%) case compared with the zero prepulse case. These observations, coupled with measurements of beam divergence and beam deviation through refractive bending, as well as general agreement with modelling, lead us to conclude that, for germanium, the main influence of the prepulse is (a) to increase the energy absorbed from the main pulse, (b) to increase the volume of the gain zone and (c) to relax the plasma density gradients, particularly in the J = 0-1 gain zone.