2 resultados para Exponential Euler method
Resumo:
This paper presents an approach to compute transonic Limit Cycle O
scillations using a coupled Harmonic Balance formulation based on the Euler equations for fluid dynamics and finite element models. The paper will investigate the role of aerodynamic (shocks) and structural nonlinearities in driving the limit cycle behaviour. Part icular attention will be given to nonlinear interactions for subcritical LCOs. The Aero elastic Harmonic Balance formulation, allows for solutions of the coupled structural dynamics and CFD system at a reduced cost.
Resumo:
We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.