4 resultados para Explosives.
Resumo:
A comprehensive analysis of metastable dissociation of 2, 4-dinitrotoluene (DNT) parent anions formed by attachment of electrons of controlled energy is presented. We characterize the energy dependence and kinetic energy release of the reaction which competes with autodetachment. A surprising finding is a highly exothermic metastable reaction triggered by the attachment of thermal electrons which we relate to the well-known electrostatic ignition hazards of DNT and other explosives. Quantum chemical calculations are performed for dinitrobenzene in order to elucidate the process of NO abstraction.
Resumo:
Geophysics may assist scent dogs and divers in the search of water bodies for human and animal remains, contraband, weapons and explosives by surveying large areas rapidly and identifying targets or environmental hazards. The most commonly applied methods are described and evaluated for forensic searches. Seismic reflection or refraction and CHIRPS are useful for deep, openwater bodies and identifying large targets, yet limited in streams and ponds. The use of ground penetrating radar (GPR) onwater(WPR) is of limited use in deepwaters (over 20 m) but is advantageous in the search for non-metallic targets in small ditches and ponds. Largemetal or metal-bearing targets can be successfully imaged in deep waters by using towfish magnetometers: in shallow waters such a towfish cannot be used, so a non-metalliferous boat can carry a terrestrial magnetometer. Each device has its uses, depending on the target and location: unknown target make-up (e.g. a homicide victimwith or without a metal object) may be best located using a range ofmethods (the multi-proxy approach), depending on water depth. Geophysics may not definitively find the target, but can provide areas for elimination and detailed search by dogs and divers, saving time and effort.
Resumo:
Geoscience methods are increasingly being utilised in criminal, environmental and humanitarian forensic investigations, and the use of such methods is supported by a growing body of experimental and theoretical research. Geoscience search techniques can complement traditional methodologies in the search for buried objects, including clandestine graves, weapons, explosives, drugs, illegal weapons, hazardous waste and vehicles. This paper details recent advances in search and detection methods, with case studies and reviews. Relevant examples are given, together with a generalised workflow for search and suggested detection technique(s) table. Forensic geoscience techniques are continuing to rapidly evolve to assist search investigators to detect hitherto difficult to locate forensic targets.
Resumo:
The burial of objects (human remains, explosives, weapons) below or behind concrete, brick, plaster or tiling may be associated with serious crime and are difficult locations to search. These are quite common forensic search scenarios but little has been published on them to-date. Most documented discoveries are accidental or from suspect/witness testimony. The problem in locating such hidden objects means a random or chance-based approach is not advisable. A preliminary strategy is presented here, based on previous studies, augmented by primary research where new technology or applications are required. This blend allows a rudimentary search workflow, from remote desktop study, to non-destructive investigation through to recommendations as to how the above may inform excavation, demonstrated here with a case study from a homicide investigation. Published case studies on the search for human remains demonstrate the problems encountered when trying to find and recover sealed-in and sealed over locations. Established methods include desktop study, photography, geophysics and search dogs:these are integrated with new technology (LiDAR and laser scanning; photographic rectification; close quarter aerial imagery; ground-penetrating radar on walls and gamma-ray/neutron activation radiography) to propose this possible search strategy.