15 resultados para Exelon Braidwood Nuclear Facility (Will County, Ill.)
Resumo:
Background
Over the past ten years MRSA has become endemic in hospitals and is associated with increased healthcare costs. Critically ill patients are most at risk, in part because of the number of invasive therapies that they require in the intensive care unit (ICU). Washing with 5% tea tree oil (TTO) has been shown to be effective in removing MRSA on the skin. However, to date, no trials have evaluated the potential of TTO body wash to prevent MRSA colonization or infection. In addition, detecting MRSA by usual culture methods is slow. A faster method using a PCR assay has been developed in the laboratory, but requires evaluation in a large number of patients.
Methods/Design
This study protocol describes the design of a multicentre, phase II/III prospective open-label randomized controlled clinical trial to evaluate whether a concentration of 5% TTO is effective in preventing MRSA colonization in comparison with a standard body wash (Johnsons Baby Softwash) in the ICU. In addition we will evaluate the cost-effectiveness of TTO body wash and assess the effectiveness of the PCR assay in detecting MRSA in critically ill patients. On admission to intensive care, swabs from the nose and groin will be taken to screen for MRSA as per current practice. Patients will be randomly assigned to be washed with the standard body wash or TTO body wash. On discharge from the unit, swabs will be taken again to identify whether there is a difference in MRSA colonization between the two groups.
Discussion
If TTO body wash is found to be effective, widespread implementation of such a simple colonization prevention tool has the potential to impact on patient outcomes, healthcare resource use and patient confidence both nationally and internationally.
Trial Registration
[ISRCTN65190967]
Resumo:
This article examines hospital provision in Ireland during the early twentieth century. It examines attempts by the newly independent Irish Free State to reform and de-stigmatise medical relief in former workhouse infirmaries. Such reforms were designed to move away from nineteenth century welfare regimes which were underpinned by principles of deterrence. The reform initiated in independent Ireland - the first attempted break-up of the New Poor Law in Great Britain or Ireland - was partly successful. Many of the newly named County and District Hospitals provided solely for medical cases and managed to dissociate such health care provision from the relief of poverty. However, some hospitals continued to act as multifunctional institutions and provided for various categories including the sick, the aged and infirm, 'unmarried mothers' and 'harmless lunatics'. Such institutions often remained associated with the relief of poverty. This article also examines patient fee-payment and outlines how fresh terms of entitlement and means-testing were established. Such developments were even more pronounced in voluntary hospitals where the majority of patients made a financial contribution to their treatment. The article argues that the ability to pay at times determined the type of provision, either voluntary or rate-aided, available to the sick. However, it concludes that the clinical condition of patients often determined whether they entered a more prestigious voluntary hospital or the former workhouse. Although this article concentrates on two Irish case studies, County Kerry and Cork City; it is conceptualised within wider developments with particular reference to the British context.
Resumo:
Background: The incidence of delirium in ventilated patients is estimated at up to 82%, and it is associated with longer intensive care and hospital stays, and long-term cognitive impairment and mortality. The pathophysiology of delirium has been linked with inflammation and neuronal apoptosis. Simvastatin has pleiotropic properties; it penetrates the brain and, as well as reducing cholesterol, reduces inflammation when used at clinically relevant doses over the short term. This is a single centre randomised, controlled trial which aims to test the hypothesis that treatment with simvastatin will modify delirium incidence and outcomes.
Methods/Design: The ongoing study will include 142 adults admitted to the Watford General Hospital Intensive Care Unit who require mechanical ventilation in the first 72 hours of admission. The primary outcome is the number of delirium- and coma-free days in the first 14 days. Secondary outcomes include incidence of delirium, delirium- and coma-free days in the first 28 days, days in delirium and in coma at 14 and 28 days, number of ventilator-free days at 28 days, length of critical care and hospital stay, mortality, cognitive decline and healthcare resource use. Informed consent will be taken from patient's consultee before randomisation to receive either simvastatin (80 mg) or placebo once daily. Daily data will be recorded until day 28 after randomisation or until discharge from the ICU if sooner. Surviving patients will be followed up on at six months from discharge. Plasma and urine samples will be taken to investigate the biological effect of simvastatin on systemic markers of inflammation, as related to the number of delirium- and coma-free days, and the potential of cholinesterase activity and beta-amyloid as predictors of the risk of delirium and long-term cognitive impairment.
Discussion: This trial will test the efficacy of simvastatin on reducing delirium in the critically ill. If patients receiving the statin show a reduced number of days in delirium compared with the placebo group, the inflammatory theory implicated in the pathogenesis of delirium will be strengthened.
Resumo:
The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.
Resumo:
A subset of proteins predominantly associated with early endosomes or implicated in clathrin-mediated endocytosis can shuttle between the cytoplasm and the nucleus. Although the endocytic functions of these proteins have been extensively studied, much less effort has been expended in exploring their nuclear roles. Membrane trafficking proteins can affect signalling and proliferation and this can be achieved either at a nuclear or endocytic level. Furthermore, some proteins, such as Huntingtin interacting protein 1, are known as cancer biomarkers. This review will highlight the limits of our understanding of their nuclear functions and the relevance of this to signalling and oncogenesis.
Resumo:
Background:
Prolonged mechanical ventilation is associated with a longer intensive care unit (ICU) length of stay and higher mortality. Consequently, methods to improve ventilator weaning processes have been sought. Two recent Cochrane systematic reviews in ICU adult and paediatric populations concluded that protocols can be effective in reducing the duration of mechanical ventilation, but there was significant heterogeneity in study findings. Growing awareness of the benefits of understanding the contextual factors impacting on effectiveness has encouraged the integration of qualitative evidence syntheses with effectiveness reviews, which has delivered important insights into the reasons underpinning (differential) effectiveness of healthcare interventions.
Objectives:
1. To locate, appraise and synthesize qualitative evidence concerning the barriers and facilitators of the use of protocols for weaning critically-ill adults and children from mechanical ventilation;
2. To integrate this synthesis with two Cochrane effectiveness reviews of protocolized weaning to help explain observed heterogeneity by identifying contextual factors that impact on the use of protocols for weaning critically-ill adults and children from mechanical ventilation;
3. To use the integrated body of evidence to suggest the circumstances in which weaning protocols are most likely to be used.
Search methods:
We used a range of search terms identified with the help of the SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) mnemonic. Where available, we used appropriate methodological filters for specific databases. We searched the following databases: Ovid MEDLINE, Embase, OVID, PsycINFO, CINAHL Plus, EBSCOHost, Web of Science Core Collection, ASSIA, IBSS, Sociological Abstracts, ProQuest and LILACS on the 26th February 2015. In addition, we searched: the grey literature; the websites of professional associations for relevant publications; and the reference lists of all publications reviewed. We also contacted authors of the trials included in the effectiveness reviews as well as of studies (potentially) included in the qualitative synthesis, conducted citation searches of the publications reporting these studies, and contacted content experts.
We reran the search on 3rd July 2016 and found three studies, which are awaiting classification.
Selection criteria:
We included qualitative studies that described: the circumstances in which protocols are designed, implemented or used, or both, and the views and experiences of healthcare professionals either involved in the design, implementation or use of weaning protocols or involved in the weaning of critically-ill adults and children from mechanical ventilation not using protocols. We included studies that: reflected on any aspect of the use of protocols, explored contextual factors relevant to the development, implementation or use of weaning protocols, and reported contextual phenomena and outcomes identified as relevant to the effectiveness of protocolized weaning from mechanical ventilation.
Data collection and analysis:
At each stage, two review authors undertook designated tasks, with the results shared amongst the wider team for discussion and final development. We independently reviewed all retrieved titles, abstracts and full papers for inclusion, and independently extracted selected data from included studies. We used the findings of the included studies to develop a new set of analytic themes focused on the barriers and facilitators to the use of protocols, and further refined them to produce a set of summary statements. We used the Confidence in the Evidence from Reviews of Qualitative Research (CERQual) framework to arrive at a final assessment of the overall confidence of the evidence used in the synthesis. We included all studies but undertook two sensitivity analyses to determine how the removal of certain bodies of evidence impacted on the content and confidence of the synthesis. We deployed a logic model to integrate the findings of the qualitative evidence synthesis with those of the Cochrane effectiveness reviews.
Main results:
We included 11 studies in our synthesis, involving 267 participants (one study did not report the number of participants). Five more studies are awaiting classification and will be dealt with when we update the review.
The quality of the evidence was mixed; of the 35 summary statements, we assessed 17 as ‘low’, 13 as ‘moderate’ and five as ‘high’ confidence. Our synthesis produced nine analytical themes, which report potential barriers and facilitators to the use of protocols. The themes are: the need for continual staff training and development; clinical experience as this promotes felt and perceived competence and confidence to wean; the vulnerability of weaning to disparate interprofessional working; an understanding of protocols as militating against a necessary proactivity in clinical practice; perceived nursing scope of practice and professional risk; ICU structure and processes of care; the ability of protocols to act as a prompt for shared care and consistency in weaning practice; maximizing the use of protocols through visibility and ease of implementation; and the ability of protocols to act as a framework for communication with parents.
Authors' conclusions:
There is a clear need for weaning protocols to take account of the social and cultural environment in which they are to be implemented. Irrespective of its inherent strengths, a protocol will not be used if it does not accommodate these complexities. In terms of protocol development, comprehensive interprofessional input will help to ensure broad-based understanding and a sense of ‘ownership’. In terms of implementation, all relevant ICU staff will benefit from general weaning as well as protocol-specific training; not only will this help secure a relevant clinical knowledge base and operational understanding, but will also demonstrate to others that this knowledge and understanding is in place. In order to maximize relevance and acceptability, protocols should be designed with the patient profile and requirements of the target ICU in mind. Predictably, an under-resourced ICU will impact adversely on protocol implementation, as staff will prioritize management of acutely deteriorating and critically-ill patients.
Resumo:
Background: Critically ill patients have an increased risk of developing delirium during their intensive care stay.To date, pharmacological interventions have not been shown to be effective for delirium management but non-pharmacological interventions have shown some promise. The aim of this systematic review is to identify effective non-pharmacological interventions for reducing the incidence or the duration of delirium in critically ill patients.
Methods: We will search MEDLINE, EMBASE, CINAHL, Web of Science, AMED, psycINFO and the Cochrane Library.We will include studies of critically ill adults and children. We will include randomised trials and controlled trials which measure the effectiveness of one or more non-pharmacological interventions in reducing incidence or duration ofdelirium in critically ill patients. We will also include qualitative studies that provide an insight into patients and their families’ experiences of delirium and non-pharmacological interventions. Two independent reviewers will assess studies for eligibility, extract data and appraise quality. We will conduct meta-analyses if possible or present results narratively.Qualitative studies will also be reviewed by two independent reviewers, and a specially designed quality assessment tool incorporating the CASP framework and the POPAY framework will be used to assess quality.
Discussion: Although non-pharmacological interventions have been studied in populations outside of intensive care units and multicomponent interventions have successfully reduced incidence and duration of delirium, no systematic review of non-pharmacological interventions specifically targeting delirium in critically ill patients have been undertaken to date. This systematic review will provide evidence for the development of a multicomponent intervention for delirium management of critically ill patients that can be tested in a subsequent multicentre randomised trial.
Resumo:
As a leading facility in laser-driven nuclear physics, ELI-NP will develop innovative research in the fields of materials behavior in extreme environments and radiobiology, with applications in the development of accelerator components, new materials for next generation fusion and fission reactors, shielding solutions for equipment and human crew in long term space missions and new biomedical technologies. The specific properties of the laser-driven radiation produced with two lasers of 1 PW at a pulse repetition rate of 1 Hz each are an ultra-short time scale, a relatively broadband spectrum and the possibility to provide simultaneously several types of radiation. Complex, cosmic-like radiation will be produced in a ground-based laboratory allowing comprehensive investigations of their effects on materials and biological systems. The expected maximum energy and intensity of the radiation beams are 19 MeV with 10^9 photon/pulse for photon radiation, 2 GeV with 108 electron/pulse for electron beams, 60 MeV with 10^12 proton/pulse for proton and ion beams and 60 MeV with 107 neutron/pulse for a neutron source. Research efforts will be directed also towards measurements for radioprotection of the prompt and activated dose, as a function of laser and target characteristics and to the development and testing of various dosimetric methods and equipment.
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.
Resumo:
Laser-target interaction represents a very promising field for several potential applications,
from the nuclear physics to the radiobiology. However optically accelerated particle beams are
characterized by some extreme features, not suitable for many applications. Therefore, beyond
the improvements at the laser-target interaction level, many researchers are spending their efforts
for the development of specific beam transport devices in order to obtain controlled and
reproducible output beams.In this background, the ELIMED (ELI-Beamlines MEDical applications)
project was born. Within 2017, a dedicated transport beam-line coupled with dosimetric
systems, named ELIMED, will be installed at the Extreme Light Infrastructure Beamlines
(ELI-Beamlines) facility in Prague (CZ),as a part of the ELIMAIA (ELI Multidisciplinary Applications
of laserâA ¸SIon Acceleration) beamline