89 resultados para Exciton à transfert de charge


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600404]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter ���¾=20 25 erg cm s-1 under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron beam ions traps (EBITs) are widely used to study highly charged ions (HCIs). In an EBIT, a high energy electron beam collides with atoms and ions to generate HCIs in the trap region. It is important to study the physics in the trap. The atomic processes, such as electron impact ionisation (EI), radiative recombination (RR), dielectronic recombination (DR) and charge exchange (CX), occur in the trap and numerical simulation can give some parameters for design, predict the composition and describe charge state evolution in an EBIT [Phys. Rev. A 43 (199 1) 4861]. We are presently developing a new code, which additionally includes a description of the overlaps between the ion clouds of the various charge-states. It has been written so that it can simulate experiments where various machine parameters (e.g. beam energy and current) can vary throughout the simulation and will be able to use cross- sections either based on scaling laws or derived from atomic structure calculations. An object-oriented method is used in developing the new software, which is an efficient way to organize and write code. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical studies of one-electron capture in collisions of He2+ ions with H2O molecules have been carried out in the range 0.025-12 keV amu(-1) corresponding to typical solar wind velocities of 70-1523 km s(-1). Translational energy spectroscopy (TES), photon emission spectroscopy (PES), and fragment ion spectroscopy were employed to identify and quantify the collision mechanisms involved. Cross sections for selective single electron capture into n=1, 2, and 3 states of the He+ ion were obtained using TES while PES provided cross sections for capture into the He+(2p) and He+(3p) states. Our model calculations show that He+(n=2) and He+(n=3) formation proceeds via a single-electron process governed by the nucleus-electron interaction. In contrast, the He+(1s) formation mechanism involves an exothermic two-electron process driven by the electron-electron interaction, where the potential energy released by the electron capture is used to remove a second electron thereby resulting in fragmentation of the H2O molecule. This process is found to become increasingly important as the collision energy decreases. The experimental cross sections are found to be in reasonable agreement with cross sections calculated using the Demkov and Landau-Zener models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute cross sections have been measured for single and double charge exchange and x-ray line emission for highly charged ions of C, N, 0, and Ne colliding with He, H-2 CO2, and H2O at collisions energies of 7q keV. Present results of charge exchange in He and H-2 compare favorably with previous results. For CO2 and H2O, where prior work is scarce, the classical overbarrier model is found to overestimate results by up to a factor of 3. An analysis of the relative intensities of the observed Lyman x-ray transitions indicates that capture into l states is not statistical, as collision velocities are insufficient to populate the highest angular-momentum states. The importance of autoionization following multiple capture is highlighted, and enhanced radiative stabilization following double capture is observed and compared to other studies. Present results are also discussed in terms of mechanisms likely to generate x-ray emission in comets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.