20 resultados para Eutectic Solder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Combination drug products can display thermal behaviour that is more complex than for the corresponding single drug products. For example, the contraceptive vaginal ring (VR) Nuvaring contains a eutectic (lowest melting) composition of etonogestrel (ETN) and ethinyl estradiol. Here we report the predisposition of dapivirine (DPV) to form reduced melting/eutectic mixtures when combined with other contraceptive hormones and antiretrovirals, and discuss the implications for development of combination microbicide and multipurpose prevention technology (MPT) products.
Methods: Binary mixtures of DPV with darunavir (DRV), levonorgestrel (LNG), ETN or maraviroc (MVC) were prepared either by physical mixing or by solvent evaporation. Selected binary mixtures were also incorporated into silicone elastomer (SE) VR devices. Thermal behavior of the mixtures was analyzed using differential scanning calorimetry (DSC) operating in standard heating ramp mode (10 °C/min). DSC data were used to construct two component phase diagrams for each binary system.
Results: Drug mixtures typically showed reduced melting transitions for both drug components, with clear evidence for a eutectic mixture at a well-defined intermediate composition. Eutectic temperatures and compositions for the various mixtures were: 40% DPV / 60% ETN - 170°C; 25% DPV / 75% MVC - 172°C; 65% DPV / 35% LNG - 192°C. In each case, the eutectic composition was also detected when the drug mixtures were incorporated into SE VRs. For the DPV/DRV system, the thermal behaviour is complicated by desolvation from the darunavir ethanolate polymorph.
Conclusions: When DPV is combined with small molecular weight hydrophobic drugs, the melting temperature for both drugs is typically reduced to a degree dependent on the composition of the mixture. At specified compositions, a low melting eutectic system results. The formation of eutectic behavior in binary drug systems needs to be carefully characterised in order to define product performance and drug release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the utilization of deep eutectic solvents (DESs) based on the mixture of the N-methylacetamide (MAc) with a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3) as electrolytes for carbon-based supercapacitors at 80 °C. The investigated DESs were formulated by mixing a LiX with the MAc (at xLi = 0.25). All DESs show the typical eutectic characteristic with eutectic points localized in the temperature range from −85 to −52 °C. Using thermal properties measured by differential scanning calorimetry (DSC), solid–liquid equilibrium phase diagrams of investigated LiX–MAc mixtures were then depicted and also compared with those predicted by using the COSMOThermX software. However, the transport properties of selected DESs (such as the conductivity (σ) and the fluidity (η–1)) are not very interesting at ambient temperature, while by increasing the temperature up to 80 °C, these properties become more favorable for electrochemical applications, as shown by the calculated Walden products: w = ση–1 (mS cm–1 Pa–1 s–1) (7 < w < 16 at 25 °C and 513 < w < 649 at 80 °C). This “superionicity” behavior of selected DESs used as electrolytes explains their good cycling ability, which was determined herein by cyclic voltammetry and galvanostic charge–discharge methods, with high capacities up to 380 F g–1 at elevated voltage and temperature, i.e., ΔE = 2.8 V and 80 °C for the LiTFSI–MAc mixture at xLi = 0.25, for example. The electrochemical resistances ESR (equivalent series resistance) and EDR (equivalent diffusion resistance) evaluated using electrochemical impedance spectroscopy (EIS) measurements clearly demonstrate that according to the nature of anion, the mechanism of ions adsorption can be described by pure double-layer adsorption at the specific surface or by the insertion of desolvated ions into the ultramicropores of the activated carbon material. The insertion of lithium ions is observed by the presence of two reversible peaks in the CVs when the operating voltage exceeds 2 V. Finally, the efficiency and capacitance of symmetric AC/AC systems were then evaluated to show the imbalance carbon electrodes caused by important lithium insertion at the negative and by the saturation of the positive by anions, both mechanisms prevent in fact the system to be operational. Considering the promising properties, especially their cost, hazard, and risks of these DESs series, their introduction as safer electrolytes could represent an important challenge for the realization of environmentally friendly EDLCs operating at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the compatibility of candidate structural materials with liquid metals, two kinds of ferritic/martensitic steels were chosen to contact with lead–bismuth eutectic in sealed quartz–glass tubes. The corrosion exposures were for 500 and 3000 h. Results showed that the oxidation layer and carbide dissolution layer on the two steels grew with contact time under oxygen unsaturated condition. Short-term corrosion behavior of a newly developed steel showed better lead–bismuth eutectic corrosion resistance than T91 at 873 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:


Two ferritic/martensitic steels, T91 steel and newly developed SIMP steel, were subject to tensile test after being oxidized in the liquid lead-bismuth eutectic (LBE) at 873 K for 500 h, 1000 h and 2000 h. Tensile tests were also carried out on the steels only thermally aged at 873 K. The result shows that thermal aging has no effect. Exposure to LBE at 873 K leads to a slight decrease in strength, but a large decrease in elongation when tested at 873 K. When tested at 873 K after 2000 h exposure, the tensile strength of T91 decreases slightly, and elongation from 39% to 21%. For SIMP, the decreases are slightly and from 44% to 28%, for tensile strength and elongation, respectively. The room temperature strength has slightly larger percentage reductions after the LBE exposure, but the elongation changes little.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of active pharmaceutical ingredients (APIs) into multicomponent solid forms (such as salts and co-crystals) or liquid forms (such as ionic liquids (ILs) or deep eutectic mixtures) is important in optimizing the efficacy and delivery of APIs. However, there is a current debate regarding the classification of these multicomponent systems based on their ionicity which could interfere with their consideration in important applications. Multicomponent systems of intermediate ionicity can show a combination of properties, leading to behavior that is neither strictly typical of either purely ionic or purely neutral compounds, nor easily described as intermediate between the two. In this perspective, we attempt to illustrate the problems in classifying multicomponent APIs based on one of two categories by discussing selected literature regarding solid and liquid multicomponent APIs and presenting the crystal structures of some relevant systems as case studies. It is clear that a focus on restrictive nomenclature carries with it the risk that a thorough examination of the physicochemical properties of the compounds will be overlooked.