3 resultados para Ethylene-glycol Dimethacrylate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsatile, or “on-demand”, delivery systems have the capability to deliver a therapeutic molecule at the right time/site of action and in the right amount (1). Pulsatile delivery systems present multiple benefits over conventional dosage forms and provide higher patient compliance. The combination of stimuli-responsive materials with the drug delivery capabilities of hydrogel-forming MN arrays (2) opens an interesting area of research. In the present work we describe, a stimuli-responsive hydrogel-forming microneedle (MN) array that enable delivery of a clinically-relevant model drug (ibuprofen) upon application of UV radiation (Figure 1A). MN arrays were prepared using a micromolding technique using a polymer prepared from 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) (Figure 1B). The arrays were loaded with up to 5% (w/w) ibuprofen included in a light-responsible conjugate (3,5-dimethoxybenzoin conjugate) (2). The presence of the conjugate inside the MN arrays was confirmed by Raman spectroscopy measurements. MN arrays were tested in vitro showing that they were able to deliver up to three doses of 50 mg of ibuprofen after application of an optical trigger (wavelength of 365 nm) over a long period of time (up to 160 hours) (Figure 1C and 1D). The work presented here is a probe of concept and a modified version of the system should be used as UV radiation is shown to be the major etiologic agent in the development of skin cancers. Consequently, for future applications of this technology an alternative design should be developed. Based on the previous research dealing with hydrogel forming MN arrays a suitable strategy will be to use hydrogel-forming MN arrays containing a backing layer made with the material described in this work as the drug reservoir (2). Finally, a porous layer of a material that blocks UV radiation should be included between the MN array and the drug reservoir. Therefore radiation can be applied to the system without reaching the skin surface. Therefore after modification, the system described here interesting properties as “on-demand” release system for prolonged periods of time. This technology has potential for use in “on-demand” delivery of a wide range of drugs in a variety of applications relevant to enhanced patient care.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract - This study investigates the effect of solid dispersions prepared from of polyethylene glycol (PEG) 3350 and 6000 Da alone or combined with the non-ionic surfactant Tween 80 on the solubility and dissolution rate of a poorly soluble drug eprosartan mesylate (ESM) in attempt to improve its bioavailability following its oral administration.

INTRODUCTION

ESM is a potent anti-hypertension [1]. It has low water solubility and is classified as a Class II drug as per the Biopharmaceutical Classification Systems (BCS) leading to low and variable oral bioavailability (approximately 13%). [2]. Thus, improving ESM solubility and/or dissolution rate would eventually improve the drug bioavailability. Solid dispersion is widely used technique to improve the water solubility of poorly water-soluble drugs employing various biocompatible polymers. In this study, we aimed to enhance the solubility and dissolution of EMS employing solid dispersion (SD) formulated from two grades of poly ethylene glycol (PEG) polymers (i.e. PEG 3350 & PEG 6000 Da) either individually or in combination with Tween 80.

MATERIALS AND METHODS

ESM SDs were prepared by solvent evaporation method using either PEG 3350 or PEG 6000 at various (drug: polymer, w/w) ratios 1:1, 1:2, 1:3, 1:4, 1:5 alone or combined with Tween 80 added at fixed percentage of 0.1 of drug by weight?. Physical mixtures (PMs) of drug and carriers were also prepared at same ratios. Drug solid dispersions and physical mixtures were characterized in terms of drug content, drug dissolution using dissolution apparatus USP II and assayed using HPLC method. Drug dissolution enhancement ratio (ER %) from SD in comparison to the plain drug was calculated. Drug-polymer interactions were evaluated using Differential Scanning Calorimetry (DSC) and FT-IR.

RESULTS AND DISCUSSION

The in vitro solubility and dissolution studies showed SDs prepared using both polymers produced a remarkable improvement (p<0.05) in comparison to the plain drug which reached around 32% (Fig. 1). The dissolution enhancement ratio was polymer type and concentration-dependent. Adding Tween 80 to the SD did not show further dissolution enhancement but reduced the required amount of the polymer to get the same dissolution enhancement. The DSC and FT-IR studies indicated that using SD resulted in transformation of drug from crystalline to amorphous form.

CONCLUSIONS

This study indicated that SDs prepared by using both polymers i.e. PEG 3350 and PEG 6000 improved the in-vitro solubility and dissolution of ESM remarkably which may result in improving the drug bioavailability in vivo.

Acknowledgments

This work is a part of MSc thesis of O.M. Ali at the Faculty of Pharmacy, Aleppo University, Syria.

REFERENCES

[1] Ruilope L, Jager B: Eprosartan for the treatment of hypertension. Expert Opin Pharmacother 2003; 4(1):107-14

[2] Tenero D, Martin D, Wilson B, Jushchyshyn J, Boike S, Lundberg, D, et al. Pharmacokinetics of intravenously and orally administered Eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos 1998; 19(6): 351- 6.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights for the first time a full comprehension of the deformation procedure during the injection stretch blow moulding (ISBM) process of poly(ethylene terephthalate) (PET) containers, namely thin-walled rigid bottles. The processes required to form PET bottles are complicated and extensive; any development in understanding the nature of material deformation can potentially improve the bottle optimisation process. Removing the bottle mould and performing free-stretch-blow (FSB) experiments revealed insight into the bottle forming characteristics at various preform temperatures and blowing rates. Process outputs cavity pressure and stretch-rod force were recorded using at instrumented stretch-rod and preform surface strain mapping was determined using a combination of a unique patterning procedure and high speed stereoscopic digital image correlation. The unprecedented experimental analysis reveals that the deformation behaviour varies considerably with contrasting process input parameters. Investigation into the effect on deformation mode, strain rate and final bottle shape provide a basis for full understanding of the process optimisation and therefore how the process inputs may aid development of the preferred optimised container.