4 resultados para Estrogen Receptor, Breast Cancer, Molecular Epidemiology
CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions
Resumo:
Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells.
Resumo:
The androgen receptor (AR) is expressed in 60-80% of breast cancers (BC) across all molecular phenotypes, with a higher incidence in oestrogen receptor positive (ER+) BC compared to ER negative tumours. In ER+ disease, AR-expression has been linked to endocrine resistance which might be reversed with combined treatment targeting ER and AR. In triple negative BCs (TNBC), preclinical and clinical investigations have described a subset of patients that express the AR and are sensitive to androgen blockade, providing a novel therapeutic target. Enzalutamide, a potent 2nd generation anti-androgen, has demonstrated substantial preclinical and clinical anti-tumour activity in AR+ breast cancer. Short-term preoperative window of opportunity studies are a validated strategy for novel treatments to provide proof-of-concept and define the most appropriate patient population by directly assessing treatment effects in tumour tissue before and after treatment. The ARB study aims to assess the anti-tumour effects of enzalutamide in early ER+ breast cancer and TNBC, to identify the optimal target population for further studies and to directly explore the biologic effects of enzalutamide on BC and stromal cells. Methods: ARB is an international, investigator sponsored WOO phase II study in women with newly diagnosed primary ER+ BC or AR+ TNBC of ≥ 1cm. The study has two cohorts. In the ER+ cohort, postmenopausal patients will be randomised 2:1 to receive either enzalutamide (160mg OD) plus exemestane (50mg OD) or exemestane (25mg OD). In the TNBC cohort, AR+ will receive single agent treatment with enzalutamide (160mg OD). Study treatment is planned for 15–29 days, followed by surgery or neo-adjuvant therapy. Tissue and blood samples are collected before treatment and on the last day of study treatment. The primary endpoint is inhibition of tumour-cell proliferation, as measured by change in Ki67 expression, determined centrally by 2 investigators. Secondary endpoints include induction of apoptosis (Caspase3), circulating hormone levels and safety. ARB aims to recruit ≈235 patients from ≈40 sites in the UK, Germany, Spain and USA. The study is open to recruitment.
IGF-1R inhibition sensitizes breast cancer cells to ATM-Related Kinase (ATR) inhibitor and cisplatin
Resumo:
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Resumo:
BACKGROUND: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance.
METHODS: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided.
RESULTS: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner.
CONCLUSIONS: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.