3 resultados para Equilibrium structures
Resumo:
We report results of first-principles calculations on the thermodynamic stability of different Sr adatom structures that have been proposed to explain some of the observed reconstructions of the (001) surface of strontium titanate (Kubo and Nozoye 2003 Surf Sci. 542 177). From surface free energy calculations, a phase diagram is constructed indicating the range of conditions over which each structure is most stable. These results are compared with Kubo and Nozoye's experimental observations. It is concluded that low Sr adatom coverage structures can only be explained if the surface is far from equilibrium. Intermediate coverage structures are stable only if the surface is in or very nearly in equilibrium with the strontium oxide.
Resumo:
The equilibrium structure of ErOn (nless than or equal to6) complexes in crystalline silicon has been investigated by density-functional computations. Two different geometries have been considered, corresponding to the substitutional and tetrahedral interstitial site for erbium. All atomic coordinates have been optimized by Car-Parrinello molecular dynamics. The resulting structures have low symmetry, with E-O distances of similar to2.35 Angstrom. The substitutional site is the most stable one for nless than or equal to2, while the tetrahedral interstitial is favored for n>2.
Resumo:
A novel numerical technique is proposed to model thermal plasma of microseconds/milliseconds time-scale effect. Modelling thermal plasma due to lightning strike will allow the estimation of electric current density, plasma pressure, and heat flux at the surface of the aircraft structure. These input data can then be used for better estimation of the mechanical/thermal induced damage on the aircraft structures for better protection systems design. Thermal plasma generated during laser cutting, electric (laser) welding and other plasma processing techniques have been the focus of many researchers. Thermal plasma is a gaseous state that consists from a mixture of electrons, ions, and natural particles. Thermal plasma can be assumed to be in local thermodynamic equilibrium, which means the electrons and the heavy species have equal temperature. Different numerical techniques have been developed using a coupled Navier Stokes – Heat transfer – Electromagnetic equations based on the assumption that the thermal plasma is a single laminar gas flow. These previous efforts focused on generating thermal plasma of time-scale in the range of seconds. Lighting strike on aircraft structures generates thermal plasma of time-scale of milliseconds/microseconds, which makes the previous physics used not applicable. The difficulty comes from the Navier-Stokes equations as the fluid is simulated under shock load, this introducing significant changes in the density and temperature of the fluid.