6 resultados para Equatorial Indian Ocean Oscillation (EQUINOO)
Resumo:
We investigated groundwater salinity as a key element in both the short and long-term evolution of the island of Grande Glorieuse. Firstly, we demonstrated that its evolution involved the integration of the whole range of variables forcing climate change. Piezometric surveys designed to sample the salinity of the subsoil waters of Grande Glorieuse could therefore provide an objective indicator of the environment’s evolution. Then, based on information from geoelectrical investigations, we proved that the spatial distribution of salinity is strongly dependent on the geological structure of the island. Structural heterogeneities can influence vulnerability of the island environment to salinization of the freshwater lens. Thus, characterization and monitoring of the freshwater lens will provide a reliable means of observing and managing anticipated climate changes on small islands. [Join J.-L., Banton O., Comte J.-C., Leze J., Massin F., Nicolini E. (2011), Assessing spatio-temporal patterns of groundwater salinity in small coral islands in the Western Indian Ocean, Western Indian Ocean Journal of Marine Science, 10(1), 1-12]
Resumo:
The uppermost 500cm sedimentary core from ODP site located at the Eastern flank of Najareth bank in the Northern Indian Ocean has yielded altogether twenty four species of planktonic foraminifera. Among all these species, Globorotalia menardii has been found to be consistently dominant in the faunal assemblages from most of the samples. The 18O measured on the tests of Globorotalia menardii from all levels help in precisely working out the sediment accumulation rates at different isotopic stages, and deciphering the change in climate in the Late Quaternary as well.
Resumo:
External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions(1). Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-richmiddle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few(2-4), especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional (similar to 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low-latitude climate regimes to high-latitude boundary conditions.
Resumo:
The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.