2 resultados para Envelopes (Stationery)
Resumo:
The provision of physical and social infrastructure in the form of roads, green spaces and community facilities has traditionally been provided for by the state through the general taxation system. However, as the state has been transformed along more neoliberal lines, the private sector is increasingly relied upon to deliver public goods and services. Planning gain agreements have flourished within this context by offering another vehicle through which local facilities are privately funded. Whilst these agreements reflect the broader dynamics of neoliberalism, they are commonly viewed as a tool which can be employed to challenge these very dynamics by empowering local communities to secure more just planning outcomes. This paper counters such claims. Based on evidence gathered from 80 interviews with planners, councillors, developers and community groups in Ireland, the paper demonstrates how planning gain agreements have been strategically redeployed by the holders of political and economic power to serve their own ends. In seeking to understand why and how this has occurred, specific consideration is given to the changing power dynamics between the state and private capital under neoliberalism. The paper highlights how institutional arrangements have enabled developers to infiltrate the political sphere in more subtle and implicit ways than ever before. We conclude by arguing that planning gain must be understood as a mechanism which has been manipulated in ways which essentially work to preserve and enhance, rather than redress, existing power imbalances in the planning system by facilitating large scale transfers of wealth upwards in society.
Resumo:
Emission and absorption line observations of molecules in late-type stars are a vital component in our understanding of stellar evolution, dust formation and mass loss in these objects. The molecular composition of the gas in the circumstellar envelopes of AGB stars reflects chemical processes in gas whose properties are strong functions of radius with density and temperature varying by more than ten and two orders of magnitude, respectively. In addition, the interstellar UV field plays a critical role in determining not only molecular abundances but also their radial distributions. In this article, I shall briefly review some recent successful approaches to describing chemistry in both the inner and outer envelopes and outline areas of challenge for the future.