3 resultados para Energy splitting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecules bonded between two metal contacts form the simplest possible molecular devices. Coupled by the molecule, the left and right contact-based states form symmetric and antisymmetric pairs near the Fermi level. We relate the size of the resulting energy splitting DeltaE to the symmetry and degree of delocalization of the coupling molecular orbital. Qualitative trends in molecular conductances are then estimated from the variations in DeltaE. We examine benzenedithiol and other molecules of interest in transport. (C) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of solar-energy-conversion devices depends on the absorption region and intensity of the photon collectors. Organic chromophores, which have been widely stabilized on inorganic semiconductors for light trapping, are limited by the interface between the chromophore and semiconductor. Herein we report a novel orange zinc germanate (Zn-Ge-O) with a chromophore-like structure, by which the absorption region can be dramatically expanded. Structural characterizations and theoretical calculations together reveal that the origin of visible-light response can be attributed to the unusual metallic Ge-Ge bonds which act in a similar way to organic chromophores. Benefiting from the enhanced light harvest, the orange Zn-Ge-O demonstrates superior capacity for solar-driven hydrogen production.