3 resultados para Energy scenario
Resumo:
The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher–catcher scenario, anisotropy in neutron emission was studied for the deuterium–deuterium fusion reaction. Simulation results are consistent with the narrow-divergence ( ∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.
Resumo:
In this letter, we consider wireless powered communication networks which could operate perpetually, as the base station (BS) broadcasts energy to the multiple energy harvesting (EH) information transmitters. These employ “harvest then transmit” mechanism, as they spend all of their energy harvested during the previous BS energy broadcast to transmit the information towards the BS. Assuming time division multiple access (TDMA), we propose a novel transmission scheme for jointly optimal allocation of the BS broadcasting power and time sharing among the wireless nodes, which maximizes the overall network throughput, under the constraint of average transmit power and maximum transmit power at the BS. The proposed scheme significantly outperforms “state of the art” schemes that employ only the optimal time allocation. If a single EH transmitter is considered, we generalize the optimal solutions for the case of fixed circuit power consumption, which refers to a much more practical scenario.
Resumo:
In this paper, we investigate the effect of of the primary network on the secondary network when harvesting energy in cognitive radio in the presence of multiple power beacons and multiple secondary transmitters. In particular, the influence of the primary transmitter's transmit power on the energy harvesting secondary network is examined by studying two scenarios of primary transmitter's location, i.e., the primary transmitter's location is near to the secondary network and the primary transmitter's location is far from the secondary network. In the scenario where the primary transmitter locates near to the secondary network, although secondary transmitter can be benefit from the harvested energy from the primary transmitter, the interference caused by the primary transmitter suppresses the secondary network performance. Meanwhile, in both scenarios, despite the fact that the transmit power of the secondary transmitter can be improved by the support of powerful power beacons, the peak interference constraint at the primary receiver limits this advantage. In addition, the deployment of multiple power beacons and multiple secondary transmitters can improve the performance of the secondary network. The analytical expressions of the outage probability of the secondary network in the two scenarios are also provided and verified by numerical simulations.