64 resultados para Energy efficiency policy
Resumo:
We examine the effect of energy efficiency incentives on household energy efficiency home improvements. Starting in February 2007, Italian homeowners have been able to avail themselves of tax credits on the purchase and installation costs of certain types of energy efficiency renovations. We examine two such renovations—door/window replacements and heating system replacements—using multi-year cross-section data from the Italian Consumer Expenditure Survey and focusing on a narrow period around the introduction of the tax credits. Our regressions control for dwelling and household characteristics and economy-wide factors likely to influence the replacement rates. The effects of the policy are different for the two types of renovations. With window replacements, the policy is generally associated with a 30 % or stronger increase in the renovation rates and number of renovations. In the simplest econometric models, the effect is not statistically significant, but the results get stronger when we allow for heterogeneous effects across the country. With heating system replacements, simpler models suggest that the tax credits policy had no effect whatsoever or that free riding was rampant, i.e., people are now accepting subsidies for replacements that they would have done anyway. Further examination suggests a strong degree of heterogeneity in the effects across warmer and colder parts of the country, and effects in the colder areas that are even more pronounced than those for window replacements. These results should, however, be interpreted with caution due to the low rates of renovations, which imply that the effects are estimated relatively imprecisely.
Resumo:
Energy efficiency improvement has been a key objective of China’s long-term energy policy. In this paper, we derive single-factor technical energy efficiency (abbreviated as energy efficiency) in China from multi-factor efficiency estimated by means of a translog production function and a stochastic frontier model on the basis of panel data on 29 Chinese provinces over the period 2003–2011. We find that average energy efficiency has been increasing over the research period and that the provinces with the highest energy efficiency are at the east coast and the ones with the lowest in the west, with an intermediate corridor in between. In the analysis of the determinants of energy efficiency by means of a spatial Durbin error model both factors in the own province and in first-order neighboring provinces are considered. Per capita income in the own province has a positive effect. Furthermore, foreign direct investment and population density in the own province and in neighboring provinces have positive effects, whereas the share of state-owned enterprises in Gross Provincial Product in the own province and in neighboring provinces has negative effects. From the analysis it follows that inflow of foreign direct investment and reform of state-owned enterprises are important policy handles.
Resumo:
The aim of the study was to establish if a relationship exists between the energy efficiency of gait, and measures of activity limitation, participation restriction, and health status in a representative sample of children with cerebral palsy (CP). Secondary aims were to investigate potential differences between clinical subtypes and gross motor classification, and to explore other relationships between the measures under investigation. A longitudinal study of a representative sample of 184 children with ambulant CP was conducted (112 males, 72 females; 94 had unilateral spastic C P, 84 had bilateral spastic C P, and six had non-spastic forms; age range 4-17y; Gross Motor Function Classification System Level I, n=57; Level II, n=91; Level III, n=22; and Level IV, n=14); energy efficiency (oxygen cost) during gait, activity limitation, participation restriction, and health status were recorded. Energy efficiency during gait was shown to correlate significantly with activity limitations; no relationship between energy efficiency during gait was found with either participation restriction or health status. With the exception of psychosocial health, all other measures showed significant differences by clinical subtype and gross motor classification. The energy efficiency of walking is not reflective of participation restriction or health status. Thus, therapies leading to improved energy efficiency may not necessarily lead to improved participation or general health.
Resumo:
Aim
The aim of this study was to use a prospective longitudinal study to describe age-related trends in energy efficiency during gait, activity, and participation in ambulatory children with cerebral palsy (CP).
Method
Gross Motor Function Measure (GMFM), Paediatric Evaluation of Disability Inventory (PEDI), and Lifestyle Assessment Questionnaire-Cerebral Palsy (LAQ-CP) scores, and energy efficiency (oxygen cost) during gait were assessed in representative sample of 184 children (112 male; 72 female; mean age 10y 9mo; range 4–16y) with CP. Ninety-four children had unilateral spastic CP, 84 bilateral spastic CP, and six had other forms of CP. Fifty-seven were classified as Gross Motor Function Classification System (GMFCS) level I, 91 as level II, 22 as level III, and 14 as level IV). Assessments were carried out on two occasions (visit 1 and visit 2) separated by an interval of 2 years and 7 months. A total of 157 participants returned for reassessment.
Results
Significant improvements in mean raw scores for GMFM, PEDI, and LAQ-CP were recorded; however, mean raw oxygen cost deteriorated over time. Age-related trends revealed gait to be most inefficient at the age of 12 years, but GMFM scores continued to improve until the age of 13 years, and two PEDI subscales to age 14 years, before deteriorating (p<0.05). Baseline score was consistently the single greatest predictor of visit 2 score. Substantial agreement in GMFCS ratings over time was achieved (?lw=0.74–0.76).
Interpretation
These findings have implications in terms of optimal provision and delivery of services for young people with CP to maximize physical capabilities and maintain functional skills into adulthood.
Resumo:
Using conjoint choice experiments, we surveyed 473 Swiss homeowners about their preferences for energy efficiency home renovations.We find that homeowners are responsive to the upfront costs of the renovation projects, governmentoffered rebates, savings in energy expenses, time horizon over which such savings would be realized, and thermal comfort improvement. The implicit discount rate is low, ranging from 1.5 to 3%, depending on model specification. This is consistent with Hassett and Metcalf (1993) and Metcalf and Rosenthal (1995), and with the fact that our scenarios contain no uncertainty. Respondents who feel completely uncertain about future energy prices are more likely to select the status quo (no renovations) in any given choice task and weight the costs of the investments more heavily than the financial gains (subsidies and savings on the energy bills). Renovations are more likely when respondents believe that climate change considerations are important determinants of home renovations. Copyright © 2013 by the IAEE. All rights reserved.
Resumo:
An extension of approximate computing, significance-based computing exploits applications' inherent error resiliency and offers a new structural paradigm that strategically relaxes full computational precision to provide significant energy savings with minimal performance degradation.
Resumo:
Non-Volatile Memory (NVM) technology holds promise to replace SRAM and DRAM at various levels of the memory hierarchy. The interest in NVM is motivated by the difficulty faced in scaling DRAM beyond 22 nm and, long-term, lower cost per bit. While offering higher density and negligible static power (leakage and refresh), NVM suffers increased latency and energy per memory access. This paper develops energy and performance models of memory systems and applies them to understand the energy-efficiency of replacing or complementing DRAM with NVM. Our analysis focusses on the application of NVM in main memory. We demonstrate that NVM such as STT-RAM and RRAM is energy-efficient for memory sizes commonly employed in servers and high-end workstations, but PCM is not. Furthermore, the model is well suited to quickly evaluate the impact of changes to the model parameters, which may be achieved through optimization of the memory architecture, and to determine the key parameters that impact system-level energy and performance.
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.
Resumo:
Energy in today's short-range wireless communication is mostly spent on the analog- and digital hardware rather than on radiated power. Hence,purely information-theoretic considerations fail to achieve the lowest energy per information bit and the optimization process must carefully consider the overall transceiver. In this paper, we propose to perform cross-layer optimization, based on an energy-aware rate adaptation scheme combined with a physical layer that is able to properly adjust its processing effort to the data rate and the channel conditions to minimize the energy consumption per information bit. This energy proportional behavior is enabled by extending the classical system modes with additional configuration parameters at the various layers. Fine grained models of the power consumption of the hardware are developed to provide awareness of the physical layer capabilities to the medium access control layer. The joint application of the proposed energy-aware rate adaptation and modifications to the physical layer of an IEEE802.11n system, improves energy-efficiency (averaged over many noise and channel realizations) in all considered scenarios by up to 44%.