78 resultados para Energy Efficient Mobile Network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive radio network is defined as an intelligent wireless communication network that should be able to adaptively reconfigure its communication parameters to meet the demands of the transmission network or the user. In this context one possible way to utilize unused licensed spectrum without interfering with incumbent users is through spectrum sensing. Due to channel uncertainties, single cognitive (opportunistic) user cannot make a decision reliably and hence collaboration among multiple users is often required. Here collaboration among large number of users tends to increase power consumption and introduces large communication overheads. In this paper, the number of collaborating users is optimized in order to maximize the probability of detection for any given power budget in a cognitive radio network, while satisfying constraints on the false alarm probability. We show that for the maximum probability of detection, collaboration of only a subset of available opportunistic users is required. The robustness of our proposed spectrum sensing algorithm is also examined under flat Rayleigh fading and AWGN channel conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In existing WiFi-based localization methods, smart mobile devices consume quite a lot of power as WiFi interfaces need to be used for frequent AP scanning during the localization process. In this work, we design an energy-efficient indoor localization system called ZigBee assisted indoor localization (ZIL) based on WiFi fingerprints via ZigBee interference signatures. ZIL uses ZigBee interfaces to collect mixed WiFi signals, which include non-periodic WiFi data and periodic beacon signals. However, WiFi APs cannot be identified from these WiFi signals by ZigBee interfaces directly. To address this issue, we propose a method for detecting WiFi APs to form WiFi fingerprints from the signals collected by ZigBee interfaces. We propose a novel fingerprint matching algorithm to align a pair of fingerprints effectively. To improve the localization accuracy, we design the K-nearest neighbor (KNN) method with three different weighted distances and find that the KNN algorithm with the Manhattan distance performs best. Experiments show that ZIL can achieve the localization accuracy of 87%, which is competitive compared to state-of-the-art WiFi fingerprint-based approaches, and save energy by 68% on average compared to the approach based on WiFi interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectrum sensing is the cornerstone of cognitive radio technology and refers to the process of obtaining awareness of the radio spectrum usage in order to detect the presence of other users. Spectrum sensing algorithms consume considerable energy and time. Prediction methods for inferring the channel occupancy of future time instants have been proposed as a means of improving performance in terms of energy and time consumption. This paper studies the performance of a hidden Markov model (HMM) spectrum occupancy predictor as well as the improvement in sensing energy and time consumption based on real occupancy data obtained in the 2.4GHz ISM band. Experimental results show that the HMM-based occupancy predictor outperforms a kth order Markov and a 1-nearest neighbour (1NN) predictor. Our study also suggests that by employing such a predictive scheme in spectrum sensing, an improvement of up to 66% can be achieved in the required sensing energy and time.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the potential energy savings and economic benefits associated with compact fluorescent light bulbs, their adoption by the residential sector has been limited to date. In this paper, we present a theoretical model that focuses on the agents' ability to perceive the correct cost of lighting and on the role of environmental attitudes as key determinants of the adoption decision. We use original data from Ireland to test our theoretical predictions. Our results emphasize the importance of education, information and environmental awareness in the adoption decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.