97 resultados para Employ
Resumo:
Thermoforming processes generally employ sheet temperature monitoring as the primary means of process control. In this paper the development of an alternative system that monitors plug force is described. Tests using a prototype device have shown that the force record over a forming cycle creates a unique map of the process operation. Key process features such as the sheet modulus, sheet sag and the timing of the process stages may be readily observed, and the effects of changes in all of the major processing parameters are easily distinguished. Continuous, cycle-to-cycle tests show that the output is consistent and repeatable over a longer time frame, providing the opportunity for development of an on-line process control system. Further testing of the system is proposed.
Resumo:
Recent growth in the shape-from-shading psychophysics literature has been paralled by an increasing availability of computer graphics hardware and software, to the extent that most psychophysical studies in this area now employ computer lighting algorithms. The most widely used of algorithms is shape-from-shading psychophysics is the Phong lighting model. This model, and other shading models of its genre, produce readily ineterpretable imiages of three-dimensional scenes. However, such algorithms are only approximations of how light interacts with real objects in the natural environment. Nevertheless, the results from psychophysical experiments using these techniques have been used to infer the processes underlying the perception of shape-from-shading in natural environments. It is important to establish whether this substitution is ever valid. We report a series of experiments investigating whether two recently reported illusions seen computer-generated, Phond shaded images occur for solid objects under real illuminants. The two illusions investigated are three-dimensional curvature contrast and the illuminant-position effect on perceived curvature. We show that both effects do occur for solid objects, and that the magnitude of these effects are equivalent regardless of whether subjects are presented with ray traced or solid objects.
Resumo:
Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1–3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony’s queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.
Resumo:
We investigate the group valued functor G(D) = D*/F*D' where D is a division algebra with center F and D' the commutator subgroup of D*. We show that G has the most important functorial properties of the reduced Whitehead group SK1. We then establish a fundamental connection between this group, its residue version, and relative value group when D is a Henselian division algebra. The structure of G(D) turns out to carry significant information about the arithmetic of D. Along these lines, we employ G(D) to compute the group SK1(D). As an application, we obtain theorems of reduced K-theory which require heavy machinery, as simple examples of our method.
Resumo:
We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality.
Resumo:
We consider a non-standard application of the Wannier model. A physical example is the single ionization of a hydrogenic beryllium ion with a fully stripped beryllium ion, where the ratio of the charge of the third particle to the charges of the escaping particles is 1/4; we investigate the single ionization by an electron of an atom comprising an electron and a nucleus of charge 1/4. An infinite exponent is obtained suggesting that this process is not tractable within the Wannier model. A modified version of Crothers' uniform semiclassical wavefunction for the outgoing particles has been adopted, since the Wannier exponents and are infinite for an effective charge of Z = 1/4. We use Bessel functions to describe the Peterkop functions u and u and derive a new turning point ?. Since u is well behaved at infinity, there exists only the singularity in u at infinity, thus we employ a one- (rather than two-) dimensional change of dependent variable, ensuring that a uniform solution is obtained that avoids semiclassical breakdown on the Wannier ridge. The regularized final-state asymptotic wavefunction is employed, along with a continuum-distorted-wave approximation for the initial-state wavefunction to obtain total cross sections on an absolute scale. © 2006 IOP Publishing Ltd.
Resumo:
ate studies(2) and fusion energy research(3,4). Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state(5). These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 10(8) K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves(4), but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately(6-10); however, this 'fast ignitor' approach(7) also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Resumo:
Prokineticins are small (8 kDa), biologically active secretory proteins whose primary structures have been highly conserved throughout the Animal Kingdom. Representatives have been identified in the defensive skin secretions of several amphibians reflecting the immense structural/functional diversity of polypeptides in such. Here we describe the identification of a prokineticin homolog (designated Bo8) from the skin secretion of the Oriental fire-bellied toad (Bombina orientalis). Full primary structural characterization was achieved using a combination of direct Edman microsequencing, mass spectrometry and cloning of encoding skin cDNA. The latter approach employed a recently described technique that we developed for the cloning of secretory peptide cDNAs from lyophilized skin secretion, and this was further extended to employ lyophilized skin as the starting material for cDNA library construction. The Bo8 precursor was found to consist of an open-reading frame of 96 amino acid residues consisting of a putative 19-residue signal peptide followed by a single 77-residue prokineticin (Mr = 7990 Da). Amino acid substitutions in skin prokineticins from the skin secretions of bombinid toads are confined to discrete sites affording the necessary information for structure/activity studies and analog design.
Resumo:
Abstract The prostanoid biosynthetic enzyme cyclooxygenase-2 (Cox-2) is upregulated in several neuroendocrine tumors. The aim of the current study was to employ a neuroendocrine cell (PC12) model of Cox-2 over-expression to identify gene products that might be implicated in the oncogenic and/or inflammatory actions of this enzyme in the setting of neuroendocrine neoplasia. Expression array and real-time PCR analysis demonstrated that levels of the neuroendocrine marker chromogranin A (CGA) were 2-fold and 3.2-fold higher, respectively, in Cox-2 over-expressing cells (PCXII) vs their control (PCMT) counterparts. Immunocytochemical and immunoblotting analyses confirmed that both intracellular and secreted levels of CGA were elevated in response to Cox-2 induction. Moreover, exogenous addition of prostaglandin E2 (1uÃ?ÂM), mimicked this effect in PCMT cells, while treatment of PCXII cells with the Cox-2 selective inhibitor NS-398 (100 nM) reduced CGA expression levels, thereby confirming the biospecificity of this finding. Levels of neurone specific enolase (NSE) were similar in the two cell lines, suggesting that the effect of Cox-2 on CGA expression was specific and not due to a global enhancement of neuroendocrine marker expression/differentiation. Cox-2-dependent CGA upregulation was associated with significantly increased chromaffin granule number and intracellular and secreted levels of dopamine. CGA promoter-driven reporter gene expression studies provided evidence that prostaglandin E2-dependent upregulation required a proximal cAMP-responsive element (CRE; -71 - -64 bp). This study is the first to demonstrate that Cox-2 upregulates both CGA expression and bioactivity in a neuroendocrine cell line and has major implications for the role of this polypeptide in the pathogenesis of neuroendocrine cancers in which Cox-2 is upregulated.
Resumo:
High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.
Resumo:
This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.
Resumo:
We describe a self-consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non-spin-polarized reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to a fixed moment model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe, which we compare with results using the local spin density approximation. The fixed moment model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach, we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.
Resumo:
The future convergence of voice, video and data applications on the Internet requires that next generation technology provides bandwidth and delay guarantees. Current technology trends are moving towards scalable aggregate-based systems where applications are grouped together and guarantees are provided at the aggregate level only. This solution alone is not enough for interactive video applications with sub-second delay bounds. This paper introduces a novel packet marking scheme that controls the end-to-end delay of an individual flow as it traverses a network enabled to supply aggregate- granularity Quality of Service (QoS). IPv6 Hop-by-Hop extension header fields are used to track the packet delay encountered at each network node and autonomous decisions are made on the best queuing strategy to employ. The results of network simulations are presented and it is shown that when the proposed mechanism is employed the requested delay bound is met with a 20% reduction in resource reservation and no packet loss in the network.
Resumo:
A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.