11 resultados para Emg
Resumo:
In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.
Resumo:
In this experiment, we examined the extent to which the spatiotemporal reorganization of muscle synergies mediates skill acquisition on a two degree-of-freedom (df) target-acquisition task. Eight participants completed five practice sessions on consecutive days. During each session they practiced movements to eight target positions presented by a visual display. The movements required combinations of flexion/extension and pronation/supination of the elbow joint complex. During practice sessions, eight targets displaced 5.4 cm from the start position ( representing joint excursions of 54) were presented 16 times. During pre- and posttests, participants acquired the targets at two distances (3.6 cm [36 degrees] and 7.2 cm [72 degrees]). EMG data were recorded from eight muscles contributing to the movements during the pre- and posttests. Most targets were acquired more rapidly after the practice period. Performance improvements were, in most target directions, accompanied by increases in the smoothness of the movement trajectories. When target acquisition required movement in both dfs, there were also practice-related decreases in the extent to which the trajectories deviated from a direct path to the target. The contribution of monofunctional muscles ( those producing torque in a single df) increased with practice during movements in which they acted as agonists. The activity in bifunctional muscles ( those contributing torque in both dfs) remained at pretest levels in most movements. The results suggest that performance gains were mediated primarily by changes in the spatial organization of muscles synergies. These changes were expressed most prominently in terms of the magnitude of activation of the monofunctional muscles.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.
Resumo:
To examine the role of the effector dynamics of the wrist in the production of rhythmic motor activity, we estimated the phase shifts between the EMG and the task-related output for a rhythmic isometric torque production task and an oscillatory movement, and found a substantial difference (45-52degrees) between the two. For both tasks, the relation between EMG and task-related output (torque or displacement) was adequately reproduced with a physiologically motivated musculoskeletal model. The model simulations demonstrated the importance of the contribution of passive structures to the overall dynamics and provided an account for the observed phase shifts in the dynamic task. Additional simulations of the musculoskeletal model with added load suggested that particular changes in the phase relation between EMG and movement may follow largely from the intrinsic muscle dynamics, rather than being the result of adaptations in the neural control of joint stiffness. The implications of these results are discussed in relation to (models of) interlimb coordination in rhythmic tasks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n=8), or training involving finger abduction-adduction without external resistance (n=8). TMS was delivered at rest at intensities from 5% below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60% of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency=21.5+/-1.4 ms; TMS latency=23.4+/-1.4 ms; P
Resumo:
An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.
Resumo:
This exploratory study was undertaken to investigate the mechanisms that contributed to improvements in upper limb function following a novel training program. Surface electromyography (EMG) was used to examine training-induced changes in the pattern of triceps and biceps activation during reaching tasks in stroke survivors with severe paresis in the chronic stage of recovery. The EMG data were obtained in the context of a single blind randomised clinical trial conducted with 42 stroke survivors with minimal upper limb muscle activity and who were more than 6 months post-stroke. Of the 33 participants who completed the study, 10 received training of reaching using a non-robotic upper limb training device, the SMART Arm, with EMG triggered functional electrical stimulation (EMG-stim), 13 received training of reaching using the SMART Arm alone, and 10 received no intervention. Each intervention group engaged in 12 1-h training sessions over a 4-week period. Clinical and laboratory measures of upper limb function were administered prior to training (0 weeks), at completion (4 weeks) and 2 months (12 weeks) after training. The primary outcome measure was 'upper arm function' which is Item 6 of the Motor Assessment Scale (MAS). Laboratory measures consisted of two multijoint reaching tasks to assess 'maximum isometric force' and 'maximum distance reached'. Surface EMG was used to monitor triceps brachii and biceps brachii during the two reaching tasks. To provide a comparison with normal values, seven healthy adults were tested on one of the reaching tasks according to the same procedure. Study findings demonstrated a statistically significant improvement in upper limb function for stroke participants in the two training groups compared to those who received no training however no difference was found between the two training groups. For the reaching tasks, all stroke participants, when compared to normal healthy adults, exhibited lower triceps and biceps activation and a lower ratio of triceps to biceps activation. Following training, stroke participants demonstrated increased triceps activation and an increased ratio of triceps to biceps activation for the task that was trained. Better performance was associated with greater triceps activation and a higher ratio of triceps to biceps activation. The findings suggest that increased activation of triceps as an agonist and an improved coordination between triceps and biceps could have mediated the observed changes in arm function. The changes in EMG activity were small relative to the changes in arm function indicating that factors, such as the contribution of other muscles of reaching, may also be implicated.
Resumo:
Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.
Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.
Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.
Resumo:
The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.
Resumo:
Older adults use a different muscle strategy to cope with postural instability, in which they ‘co-contract’ the muscles around the ankle joint. It has been suggested that this is a compensatory response to age-related proprioceptive decline however this view has never been assessed directly. The current study investigated the association between proprioceptive acuity and muscle co-contraction in older adults. We compared muscle activity, by recording surface EMG from the bilateral tibalis anterior and gastrocnemius medialis muscles, in young (aged 18-34) and older adults (aged 65-82) during postural assessment on a fixed and sway-referenced surface at age-equivalent levels of sway. We performed correlations between muscle activity and proprioceptive acuity, which was assessed using an active contralateral matching task. Despite successfully inducing similar levels of sway in the two age groups, older adults still showed higher muscle co-contraction. A stepwise regression analysis showed that proprioceptive acuity measured using variable error was the best predictor of muscle co-contraction in older adults. However, despite suggestions from previous research, proprioceptive error and muscle co-contraction were negatively correlated in older adults, suggesting that better proprioceptive acuity predicts more co-contraction. Overall, these results suggest that although muscle co-contraction may be an age-specific strategy used by older adults, it is not to compensate for age-related proprioceptive deficits.