39 resultados para Embedded System, Domain Specific Language (DSL), Agenti BDI, Arduino, Agentino


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to compare the motor function of a clinical sample of children with specific language impairment (SLI) to a language-matched comparison group that had not been referred for SLI assessment. A typical language comparison group with similar nonverbal IQ was also included. There were approximately 35 children in each group, aged 9- to 10-years-old, and the children completed a range of standardised language, motor and literacy measures. The results showed that the SLI group scored significantly lower than the language-matched and typical language comparison groups on all of the motor and literacy measures. We conclude that language factors alone are insufficient to explain the extensive comorbid motor and literacy deficits shown by the children with SLI in this study. We suggest that the clinical diagnosis of SLI may be influenced by the presence of additional developmental difficulties, which should be made explicit in assessment procedures, and that intervention strategies which address the broad range of difficulties experienced by children with a clinical diagnosis of SLI, should be prioritised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technical market indicators are tools used by technical an- alysts to understand trends in trading markets. Technical (market) indicators are often calculated in real-time, as trading progresses. This paper presents a mathematically- founded framework for calculating technical indicators. Our framework consists of a domain specific language for the un- ambiguous specification of technical indicators, and a run- time system based on Click, for computing the indicators. We argue that our solution enhances the ease of program- ming due to aligning our domain-specific language to the mathematical description of technical indicators, and that it enables executing programs in kernel space for decreased latency, without exposing the system to users’ programming errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eye-tracking studies have shown how people with autism spend significantly less time looking at socially relevant information on-screen compared to those developing typically. This has been suggested to impact on the development of socio-cognitive skills in autism. We present novel evidence of how attention atypicalities in children with autism extend to real-life interaction, in comparison to typically developing (TD) children and children with specific language impairment (SLI). We explored the allocation of attention during social interaction with an interlocutor, and how aspects of attention (awareness checking) related to traditional measures of social cognition (false belief attribution). We found divergent attention allocation patterns across the groups in relation to social cognition ability. Even though children with autism and SLI performed similarly on the socio- cognitive tasks, there were syndrome-specific atypicalities of their attention patterns. Children with SLI were most similar to TD children in terms of prioritising attention to socially pertinent information (eyes, face, awareness checking). Children with autism showed reduced attention to the eyes and face, and slower awareness checking. This study provides unique and timely insight into real-world social gaze (a)typicality in autism, SLI and typical development, its relationship to socio-cognitive ability, and raises important issues for intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Product Line software Engineering depends on capturing the commonality and variability within a family of products, typically using feature modeling, and using this information to evolve a generic reference architecture for the family. For embedded systems, possible variability in hardware and operating system platforms is an added complication. The design process can be facilitated by first exploring the behavior associated with features. In this paper we outline a bidirectional feature modeling scheme that supports the capture of commonality and variability in the platform environment as well as within the required software. Additionally, 'behavior' associated with features can be included in the overall model. This is achieved by integrating the UCM path notation in a way that exploits UCM's static and dynamic stubs to capture behavioral variability and link it to the feature model structure. The resulting model is a richer source of information to support the architecture development process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annotation of programs using embedded Domain-Specific Languages (embedded DSLs), such as the program annotation facility for the Java programming language, is a well-known practice in computer science. In this paper we argue for and propose a specialized approach for the usage of embedded Domain-Specific Modelling Languages (embedded DSMLs) in Model-Driven Engineering (MDE) processes that in particular supports automated many-step model transformation chains. It can happen that information defined at some point, using an embedded DSML, is not required in the next immediate transformation step, but in a later one. We propose a new approach of model annotation enabling flexible many-step transformation chains. The approach utilizes a combination of embedded DSMLs, trace models and a megamodel. We demonstrate our approach based on an example MDE process and an industrial case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new domain-specific, reconfigurable system-on-a-chip (SoC) architecture is proposed for video motion estimation. This has been designed to cover most of the common block-based video coding standards, including MPEG-2, MPEG-4, H.264, WMV-9 and AVS. The architecture exhibits simple control, high throughput and relatively low hardware cost when compared with existing circuits. It can also easily handle flexible search ranges without any increase in silicon area and can be configured prior to the start of the motion estimation process for a specific standard. The computational rates achieved make the circuit suitable for high-end video processing applications, such as HDTV. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards. Indeed, the cost/performance achieved exceeds that of existing but specific solutions and greatly exceeds that of general purpose field programmable gate array (FPGA) designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this
ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous papers, we have presented a logic-based framework based on fusion rules for merging structured news reports. Structured news reports are XML documents, where the textentries are restricted to individual words or simple phrases, such as names and domain-specific terminology, and numbers and units. We assume structured news reports do not require natural language processing. Fusion rules are a form of scripting language that define how structured news reports should be merged. The antecedent of a fusion rule is a call to investigate the information in the structured news reports and the background knowledge, and the consequent of a fusion rule is a formula specifying an action to be undertaken to form a merged report. It is expected that a set of fusion rules is defined for any given application. In this paper we extend the approach to handling probability values, degrees of beliefs, or necessity measures associated with textentries in the news reports. We present the formal definition for each of these types of uncertainty and explain how they can be handled using fusion rules. We also discuss the methods of detecting inconsistencies among sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a data flow based run time system as an efficient tool for supporting execution of parallel code on heterogeneous architectures hosting both multicore CPUs and GPUs. We discuss how the proposed run time system may be the target of both structured parallel applications developed using algorithmic skeletons/parallel design patterns and also more "domain specific" programming models. Experimental results demonstrating the feasibility of the approach are presented. © 2012 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient development of multi-threaded software has, for many years, been an unsolved problem in computer science. Finding a solution to this problem has become urgent with the advent of multi-core processors. Furthermore, the problem has become more complicated because multi-cores are everywhere (desktop, laptop, embedded system). As such, they execute generic programs which exhibit very different characteristics than the scientific applications that have been the focus of parallel computing in the past.
Implicitly parallel programming is an approach to parallel pro- gramming that promises high productivity and efficiency and rules out synchronization errors and race conditions by design. There are two main ingredients to implicitly parallel programming: (i) a con- ventional sequential programming language that is extended with annotations that describe the semantics of the program and (ii) an automatic parallelizing compiler that uses the annotations to in- crease the degree of parallelization.
It is extremely important that the annotations and the automatic parallelizing compiler are designed with the target application do- main in mind. In this paper, we discuss the Paralax approach to im- plicitly parallel programming and we review how the annotations and the compiler design help to successfully parallelize generic programs. We evaluate Paralax on SPECint benchmarks, which are a model for such programs, and demonstrate scalable speedups, up to a factor of 6 on 8 cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper contributes a new approach for developing UML software designs from Natural Language (NL), making use of a meta-domain oriented ontology, well established software design principles and Natural Language Processing (NLP) tools. In the approach described here, banks of grammatical rules are used to assign event flows from essential use cases. A domain specific ontology is also constructed, permitting semantic mapping between the NL input and the modeled domain. Rules based on the widely-used General Responsibility Assignment Software Principles (GRASP) are then applied to derive behavioral models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade had witnessed an unprecedented growth in the amount of available digital content, and its volume is expected to continue to grow the next few years. Unstructured text data generated from web and enterprise sources form a large fraction of such content. Many of these contain large volumes of reusable data such as solutions to frequently occurring problems, and general know-how that may be reused in appropriate contexts. In this work, we address issues around leveraging unstructured text data from sources as diverse as the web and the enterprise within the Case-based Reasoning framework. Case-based Reasoning (CBR) provides a framework and methodology for systematic reuse of historical knowledge that is available in the form of problemsolution
pairs, in solving new problems. Here, we consider possibilities of enhancing Textual CBR systems under three main themes: procurement, maintenance and retrieval. We adapt and build upon the stateof-the-art techniques from data mining and natural language processing in addressing various challenges therein. Under procurement, we investigate the problem of extracting cases (i.e., problem-solution pairs) from data sources such as incident/experience
reports. We develop case-base maintenance methods specifically tuned to text targeted towards retaining solutions such that the utility of the filtered case base in solving new problems is maximized. Further, we address the problem of query suggestions for textual case-bases and show that exploiting the problem-solution partition can enhance retrieval effectiveness by prioritizing more useful query suggestions. Additionally, we illustrate interpretable clustering as a tool to drill-down to domain specific text collections (since CBR systems are usually very domain specific) and develop techniques for improved similarity assessment in social media sources such as microblogs. Through extensive empirical evaluations, we illustrate the improvements that we are able to
achieve over the state-of-the-art methods for the respective tasks.