47 resultados para Elliott, Stephen, 1806-1866.
Resumo:
Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (X10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.
Resumo:
We simulate and discuss the local electric-field enhancement in a system of a dielectric nanoparticle placed very near to a metallic substrate. We use finite-element numerical simulations in order to understand the field-enhancement mechanism in this dielectric NP-on-mirror system. Under appropriate excitation conditions, the gap between the particle and the substrate becomes a "hot spot", i.e., a region of intense electromagnetic field. We also show how the optical properties of the dielectric NP placed on a metallic substrate affect the plasmonic field enhancement in the nanogap and characterize the confinement in the gap. Our study helps to understand and design systems with dielectric NPs on metallic substrates which can be equally as effective for SERS, fluorescence, and nonlinear phenomena as conventional all plasmonic structures.