29 resultados para Elemental sulfur


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterocyclic chalcogenones were prepd. by reaction of S, Se, or Te with ionic liqs. or salts [I; Ra = (substituted) alkyl, cycloalkyl, aryl, aralkyl, alkylaryl; Q = (unsatd.) (substituted) linker to form a ring of 5-10 members; X- = anion selected from conjugate bases of HX having a pKa value of >2.5]. Thus, 1-butyl-3-methylimidazolium acetate was heated with stoichiometric S at 75° for 48 h to give 1-butyl-3-methylimidazole-2-thione. [on SciFinder(R)]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionic liquids are shown to be good solvents for elemental sulfur, selenium, phosphorus and tellurium, and can be designed to maximise the solubility of these elements. The presence of the [S-3](center dot-) radical anion in diluted solutions of sulfur in some ionic liquids has been confirmed, and is the origin of their intense blue colour (cf. lapis lazuli).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemistry of elemental sulfur (S-8) and the polysulfides Na2S4 and Na2S6 has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S-8 in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S-8 in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as s(6)(2-) and S-4(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S-6(2-) and S-4(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S3(center dot-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanistic analysis of the reaction between elemental sulfur or selenium and 1,3-dialkylimidazolium acetate ionic liquids, in the absence of an external base or solvent, affords evidence for the equilibrium presence of carbene species in these ionic liquids. It demonstrates the potential to control, through anion selection, the concentration of carbene in stable ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of sulfur dioxide reduction at a platinum microelectrode was investigated by cyclic voltammetry in several room-temperature ionic liquids (RTILs)-[C(2)mim][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], [C(4)mim][PF6], and [C(6)mim][Cl] where [C(2)mim] is 1-ethyl-3-methylimidazolium, [C(4)mim] is 1-butyl-3-methylimidazolium, [C(6)mim] is 1-hexyl-3-methylimidazolium, and [NTf2] is bis(trifluoromethylsufonyl)imide-with special attention paid to [C(4)mim][NO3] because of the well-defined voltammetry, high solubility, and relatively low diffusion coefficient of SO2 obtained in that ionic liquid. A cathodic peak is observed in all RTILs between -2.0 and -1.0 V versus a silver quasi-reference electrode. In [C(4)mim][NO3], the peak appears at -1.0 V, and potential step chronoamperometry was used to determine that SO2 has a very high solubility of 3100 (+/-450) mM and a diffusion coefficient of 5.0 (+/-0.8) x 10(-10) m(2) s(-1) in that ionic liquid. On the reverse wave, up to four anodic peaks are observed at ca. -0.4, -0.3, -0.2, and 0.2 V in [C(4)mim][NO3]. The cathodic wave is assigned to the reduction of SO2 to its radical anion, SO2-center dot. The peaks at -0.4 and -0.2 V are assigned to the oxidation of unsolvated and solvated SO2-center dot, respectively. The peak appearing at 0.2 V is assigned to the oxidation of either S2O42- or S2O4-center dot. The activation energy for the reduction of SO2 in [C(4)mim][NO3] was measured to be 10 (+/-2) kJ mol(-1) using chronoamperometric data at different temperatures. The stabilizing interaction of the solvent with the reduced species SO2-center dot leads to a different mechanism than that observed in conventional aprotic solvents. The high sensitivity of the system to SO2 also suggests that [C(4)mim][NO3] may be a viable solvent in gas sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H2S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H2S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H2S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed. (C) 2005 American Institute of Physics.