6 resultados para Electronic structure and electrical properties of surfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32 ± 0.89 dL g-1, 274.80 ± 1.94 dL g-1 and 416.49 ± 2.21 dL g-1 illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r > 0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentological and accelerator mass spectrometry (AMS) 14C data provide estimates of the structure and age of five submarine landslides (∼0.4–3 km3) present on eastern Australia's continental slope between Noosa Heads and Yamba. Dating of the post-slide conformably deposited sediment indicates sediment accumulation rates between 0.017 m ka–1 and 0.2 m ka–1, which is consistent with previous estimates reported for this area. Boundary surfaces were identified in five continental slope cores at depths of 0.8 to 2.2 m below the present-day seafloor. Boundary surfaces present as a sharp colour-change across the surface, discernible but small increases in sediment stiffness, a slight increase in sediment bulk density of 0.1 g cm–3, and distinct gaps in AMS 14C ages of at least 25 ka. Boundary surfaces are interpreted to represent a slide plane detachment surface but are not necessarily the only ones or even the major ones. Sub-bottom profiler records indicate that: (1) the youngest identifiable sediment reflectors upslope from three submarine landslides terminate on and are truncated by slide rupture surfaces; (2) there is no obvious evidence for a post-slide sediment layer draped over, or burying, slide ruptures or exposed slide detachment surfaces; and (3) the boundary surfaces identified within the cores are unlikely to be near-surface slide surfaces within an overall larger en masse dislocation. These findings suggest that these submarine landslides are geologically recent (<25 ka), and that the boundary surfaces are either: (a) an erosional features that developed after the landslide, in which case the boundary surface age provides a minimum age for the landslide; or (b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding, in which case the age of the sediment above the boundary surface indicates the approximate age of landsliding. While an earthquake-triggering mechanism is favoured for the initiation of submarine landslides on the eastern Australian margin, further evidence is required to confirm this interpretation.